Identification macrophage signatures in prostate cancer by single-cell sequencing and machine learning

前列腺癌 列线图 肿瘤科 前列腺 癌症 肿瘤微环境 医学 内科学 计算生物学 机器学习 生物 计算机科学
作者
Zhen Kang,Yuxuan Zhao,Ren Qiu,Dong‐Ning Chen,Qing‐Shui Zheng,Xue‐Yi Xue,Ning Xu,Yongyue Wei
出处
期刊:Cancer Immunology, Immunotherapy [Springer Nature]
卷期号:73 (3) 被引量:3
标识
DOI:10.1007/s00262-024-03633-5
摘要

Abstract Background The tumor microenvironment (TME) encompasses a variety of cells that influence immune responses and tumor growth, with tumor-associated macrophages (TAM) being a crucial component of the TME. TAM can guide prostate cancer in different directions in response to various external stimuli. Methods First, we downloaded prostate cancer single-cell sequencing data and second-generation sequencing data from multiple public databases. From these data, we identified characteristic genes associated with TAM clusters. We then employed machine learning techniques to select the most accurate TAM gene set and developed a TAM-related risk label for prostate cancer. We analyzed the tumor-relatedness of the TAM-related risk label and different risk groups within the population. Finally, we validated the accuracy of the prognostic label using single-cell sequencing data, qPCR, and WB assays, among other methods. Results In this study, the TAM_2 cell cluster has been identified as promoting the progression of prostate cancer, possibly representing M2 macrophages. The 9 TAM feature genes selected through ten machine learning methods and demonstrated their effectiveness in predicting the progression of prostate cancer patients. Additionally, we have linked these TAM feature genes to clinical pathological characteristics, allowing us to construct a nomogram. This nomogram provides clinical practitioners with a quantitative tool for assessing the prognosis of prostate cancer patients. Conclusion This study has analyzed the potential relationship between TAM and PCa and established a TAM-related prognostic model. It holds promise as a valuable tool for the management and treatment of PCa patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gemini0615发布了新的文献求助10
1秒前
2秒前
orixero应助敏感的盼夏采纳,获得10
4秒前
4秒前
4秒前
爱笑的猪猪完成签到 ,获得积分10
5秒前
5秒前
6秒前
sho发布了新的文献求助80
6秒前
7秒前
sunshine完成签到,获得积分10
7秒前
7秒前
ff发布了新的文献求助20
7秒前
8秒前
lin完成签到,获得积分10
9秒前
Gulu_发布了新的文献求助10
9秒前
不想说话发布了新的文献求助10
10秒前
10秒前
天天快乐应助激昂的飞松采纳,获得10
10秒前
11秒前
五五五完成签到 ,获得积分10
13秒前
14秒前
小李完成签到,获得积分10
15秒前
16秒前
CipherSage应助西哈哈采纳,获得10
16秒前
白白白发布了新的文献求助10
16秒前
可靠的雁山完成签到,获得积分10
18秒前
18秒前
小费发布了新的文献求助30
20秒前
codwest发布了新的文献求助10
20秒前
ff发布了新的文献求助10
20秒前
wanci应助mufeixue采纳,获得10
21秒前
忧虑的芷天完成签到,获得积分10
21秒前
21秒前
22秒前
赘婿应助lzx采纳,获得10
22秒前
羊羊完成签到 ,获得积分10
23秒前
hgc完成签到 ,获得积分10
24秒前
24秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340146
求助须知:如何正确求助?哪些是违规求助? 2968185
关于积分的说明 8632667
捐赠科研通 2647742
什么是DOI,文献DOI怎么找? 1449782
科研通“疑难数据库(出版商)”最低求助积分说明 671543
邀请新用户注册赠送积分活动 660528