Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems

计算机科学 粒子群优化 三角函数 人口 早熟收敛 算法 最优化问题 数学优化 趋同(经济学) 适应性突变 遗传算法 数学 经济增长 经济 社会学 人口学 几何学
作者
Fengtao Wei,Yangyang Zhang,Junyu Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123444-123444 被引量:14
标识
DOI:10.1016/j.eswa.2024.123444
摘要

Sine Cosine Algorithm(SCA) is a population-based optimization algorithm, to find the optimal solution. However, SCA has problems such as premature convergence, insufficient solution precision for high-dimensional functions, and slow convergence speed. To solve the problems above, this paper proposes a multi-strategy-based Adaptive Sine Cosine Algorithm (ASCA). Firstly, a more uniform initial population is generated by the Halton sequence so that the initial population covers the entire search space to maintain the diversity of the initial population. Secondly, the adaptive grading strategy is adopted to sort according to the fitness value, and the population dynamics are divided into 4 grades: excellent, good, medium and poor. For the purpose of improving the convergence accuracy of the algorithm and enhancing the ability to jump out of the local optimum, hybrid mutation and elite guidance methods are applied to different levels of populations for perturbing mutations. Finally, in order to improve the convergence speed of the algorithm, a dynamic opposition-based learning global search strategy is proposed. The ASCA is tested on a set of 20 functions in low- dimensional and high-dimensional, and the improved algorithm is compared with Particle Swarm Optimization (PSO), Backtracking Search Algorithm(BSA), Genetic Algorithm(GA)and other improved Sine Cosine Algorithms. The results show the improved convergence accuracy and speed of the ASCA. Moreover, the ASCA proposed in this paper is applied to engineering optimization design. The solution results show that the ASCA is better than other algorithms in superiority-seeking ability, and can effectively solve the optimization problems in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fatcat完成签到,获得积分10
刚刚
Andy完成签到,获得积分10
1秒前
3秒前
4秒前
无花果应助白水采纳,获得30
7秒前
温文尔雅完成签到,获得积分10
7秒前
不过尔尔完成签到 ,获得积分10
7秒前
打打应助pretend采纳,获得10
7秒前
刻苦的寒凝完成签到,获得积分10
8秒前
lzw完成签到 ,获得积分10
9秒前
外向云朵完成签到,获得积分20
11秒前
12秒前
汉堡包应助hanliulaixi采纳,获得10
13秒前
Paris完成签到,获得积分10
14秒前
yyy完成签到,获得积分10
14秒前
酷波er应助阿冷采纳,获得10
16秒前
大大怪完成签到,获得积分10
16秒前
dahuihui完成签到,获得积分20
18秒前
大大怪发布了新的文献求助10
19秒前
orixero应助ryd采纳,获得10
19秒前
爱lx完成签到,获得积分10
19秒前
冷艳的友瑶完成签到,获得积分10
19秒前
非我完成签到 ,获得积分10
20秒前
长成大树完成签到,获得积分10
20秒前
整齐的达发布了新的文献求助10
21秒前
sxy完成签到,获得积分10
23秒前
顺利如冰完成签到,获得积分10
23秒前
科研小民工应助shann采纳,获得100
23秒前
烟花应助吉他平方采纳,获得10
26秒前
28秒前
星星又累完成签到,获得积分10
28秒前
30秒前
大大怪发布了新的文献求助10
32秒前
pretend发布了新的文献求助10
32秒前
excellent_shit完成签到,获得积分10
32秒前
书霂完成签到,获得积分10
32秒前
共享精神应助kingripple采纳,获得10
32秒前
嘤鸣完成签到,获得积分10
33秒前
waa完成签到,获得积分10
33秒前
李紫硕完成签到,获得积分10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736805
求助须知:如何正确求助?哪些是违规求助? 3280699
关于积分的说明 10020699
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644554
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668