Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems

正弦 计算机科学 三角函数 算法 优化算法 数学优化 人工智能 数学 几何学
作者
Fengtao Wei,Yangyang Zhang,Junyu Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123444-123444 被引量:3
标识
DOI:10.1016/j.eswa.2024.123444
摘要

Sine Cosine Algorithm(SCA) is a population-based optimization algorithm, to find the optimal solution. However, SCA has problems such as premature convergence, insufficient solution precision for high-dimensional functions, and slow convergence speed. To solve the problems above, this paper proposes a multi-strategy-based Adaptive Sine Cosine Algorithm (ASCA). Firstly, a more uniform initial population is generated by the Halton sequence so that the initial population covers the entire search space to maintain the diversity of the initial population. Secondly, the adaptive grading strategy is adopted to sort according to the fitness value, and the population dynamics are divided into 4 grades: excellent, good, medium and poor. For the purpose of improving the convergence accuracy of the algorithm and enhancing the ability to jump out of the local optimum, hybrid mutation and elite guidance methods are applied to different levels of populations for perturbing mutations. Finally, in order to improve the convergence speed of the algorithm, a dynamic opposition-based learning global search strategy is proposed. The ASCA is tested on a set of 20 functions in low- dimensional and high-dimensional, and the improved algorithm is compared with Particle Swarm Optimization (PSO), Backtracking Search Algorithm(BSA), Genetic Algorithm(GA)and other improved Sine Cosine Algorithms. The results show the improved convergence accuracy and speed of the ASCA. Moreover, the ASCA proposed in this paper is applied to engineering optimization design. The solution results show that the ASCA is better than other algorithms in superiority-seeking ability, and can effectively solve the optimization problems in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangye发布了新的文献求助10
2秒前
ffw1发布了新的文献求助10
2秒前
daisyyy发布了新的文献求助10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
硕shuo发布了新的文献求助10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
书生发布了新的文献求助10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
hhhh应助科研通管家采纳,获得10
3秒前
liang完成签到,获得积分20
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
和平使命应助科研通管家采纳,获得10
3秒前
热心冷亦发布了新的文献求助10
4秒前
4秒前
HEXIN完成签到,获得积分10
5秒前
nav完成签到 ,获得积分10
6秒前
xjwang完成签到,获得积分10
6秒前
7秒前
虚幻龙猫完成签到,获得积分20
7秒前
MM完成签到,获得积分10
8秒前
8秒前
熊猫完成签到,获得积分0
8秒前
小酒窝完成签到,获得积分10
9秒前
嗯哼应助MADAO采纳,获得20
10秒前
无语的如音完成签到,获得积分10
10秒前
10秒前
宇文非笑发布了新的文献求助10
10秒前
忐忑的醉蓝完成签到,获得积分20
11秒前
硕shuo完成签到,获得积分10
11秒前
11秒前
CodeCraft应助hata233采纳,获得10
12秒前
13秒前
ffw1发布了新的文献求助10
13秒前
liu1239完成签到,获得积分10
13秒前
GZ完成签到,获得积分20
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294908
求助须知:如何正确求助?哪些是违规求助? 2930855
关于积分的说明 8448799
捐赠科研通 2603376
什么是DOI,文献DOI怎么找? 1421085
科研通“疑难数据库(出版商)”最低求助积分说明 660782
邀请新用户注册赠送积分活动 643592