Longitudinal machine learning uncouples healthy aging factors from chronic disease risks

长寿 老年学 健康衰老 疾病 医学 遗传力 纵向研究 人口学 成功老龄化 生物 内科学 进化生物学 病理 社会学
作者
Netta Mendelson Cohen,Aviezer Lifshitz,Rami Jaschek,Ehud Rinott,Ran D. Balicer,Liran I. Shlush,Gabriel I. Barbash,Amos Tanay
出处
期刊:Nature Aging 卷期号:4 (1): 129-144 被引量:5
标识
DOI:10.1038/s43587-023-00536-5
摘要

To understand human longevity, inherent aging processes must be distinguished from known etiologies leading to age-related chronic diseases. Such deconvolution is difficult to achieve because it requires tracking patients throughout their entire lives. Here, we used machine learning to infer health trajectories over the entire adulthood age range using extrapolation from electronic medical records with partial longitudinal coverage. Using this approach, our model tracked the state of patients who were healthy and free from known chronic disease risk and distinguished individuals with higher or lower longevity potential using a multivariate score. We showed that the model and the markers it uses performed consistently on data from Israeli, British and US populations. For example, mildly low neutrophil counts and alkaline phosphatase levels serve as early indicators of healthy aging that are independent of risk for major chronic diseases. We characterize the heritability and genetic associations of our longevity score and demonstrate at least 1 year of extended lifespan for parents of high-scoring patients compared to matched controls. Longitudinal modeling of healthy individuals is thereby established as a tool for understanding healthy aging and longevity. Stitching together electronic health records with partial longitudinal coverage, Mendelson Cohen et al. use machine learning to untangle healthy aging from chronic disease, identifying markers of healthy aging and analyzing the heritability of longevity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingkong完成签到 ,获得积分10
刚刚
优秀冬天发布了新的文献求助10
刚刚
1秒前
小二郎应助萨摩耶采纳,获得10
1秒前
lili发布了新的文献求助20
2秒前
小星星发布了新的文献求助10
2秒前
烟花应助风华笔墨采纳,获得10
2秒前
笨笨的蜡烛完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
liujie666完成签到,获得积分10
3秒前
4秒前
5秒前
SciGPT应助清脆的书桃采纳,获得10
5秒前
FRANKFANG发布了新的文献求助10
5秒前
玄月发布了新的文献求助10
5秒前
薯条发布了新的文献求助20
6秒前
waaan完成签到 ,获得积分10
7秒前
我没那么郝完成签到,获得积分10
7秒前
司徒不正发布了新的文献求助30
7秒前
张甜完成签到,获得积分10
8秒前
小马甲应助鲤鱼采纳,获得100
8秒前
9秒前
hhh完成签到,获得积分20
9秒前
Arsenoma完成签到,获得积分10
9秒前
10秒前
风雨轩发布了新的文献求助10
10秒前
cmh完成签到,获得积分20
10秒前
11秒前
小菜鸡完成签到,获得积分10
11秒前
完美世界应助细腻白柏采纳,获得10
12秒前
科研通AI5应助清欢采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
Asoqiang完成签到,获得积分10
13秒前
14秒前
天天快乐应助DAN采纳,获得20
14秒前
嘴巴张大一点完成签到,获得积分10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663108
求助须知:如何正确求助?哪些是违规求助? 3223859
关于积分的说明 9753675
捐赠科研通 2933709
什么是DOI,文献DOI怎么找? 1606354
邀请新用户注册赠送积分活动 758455
科研通“疑难数据库(出版商)”最低求助积分说明 734792