Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: A critical inquiry

分级(工程) 人工智能 计算机科学 机器学习 人工神经网络 感知器 支持向量机 工程类 土木工程
作者
Taorui Zeng,Bijing Jin,Thomas Glade,Yangyi Xie,Ying Li,Yuhang Zhu,Kunlong Yin
出处
期刊:Catena [Elsevier]
卷期号:236: 107732-107732 被引量:29
标识
DOI:10.1016/j.catena.2023.107732
摘要

Current machine learning approaches to landslide susceptibility modeling often involve grading conditioning factors, a method characterized by substantial subjectivity and randomness. The necessity and rationality of such grading have sparked continued debate. Recognizing the potential profound impact of this grading on the results of models, we conducted an in-depth study focusing on four townships within the Wanzhou section of the Three Gorges Reservoir area. A comprehensive assessment was conducted using three traditional machine learning models, five ensemble learning models, and four deep learning models to evaluate the implications of continuous factor grading. Three grading strategies were explored: non-grading, equal intervals, and natural breaks. Further investigation was conducted to determine how various grade levels (e.g., 4, 6, 8, 12, 16, 20) affect model efficacy. Our analysis reveals that the Support Vector Machine (SVM) model performs optimally with an 8-level grading using natural breaks. In contrast, a decision tree (DT) and its associated ensemble models are more effective without grading. For Multi-Layer Perceptron Neural Network (MLPNN) and Convolutional Neural Networks (CNN) models, a natural breaks grading exceeding 8 levels is advisable. Gated Recurrent Unit (GRU) and Deep Neural Networks (DNN) models benefit from an equidistant grading strategy of over 12 levels, while Long Short-Term Memory Neural Networks (LSTM) models thrive with an equidistant grading surpassing 16 levels. This study is pioneering in introducing grading guidelines for machine learning models in landslide susceptibility modeling. Our findings offer invaluable insights for future research, setting a path towards more standardized practices in this field. This enhances the bridge between theoretical knowledge and its real-world application, promoting a more rigorous and systematic grading approach and advancing the standardization of landslide susceptibility modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
周晓睿完成签到 ,获得积分10
3秒前
李JJ完成签到,获得积分10
4秒前
天天快乐应助朱婷采纳,获得10
6秒前
单纯芹菜发布了新的文献求助10
7秒前
xxx完成签到,获得积分10
10秒前
10秒前
11秒前
隐形曼青应助Jimmy Ko采纳,获得10
12秒前
怂怂鼠发布了新的文献求助10
15秒前
周晓睿发布了新的文献求助10
16秒前
16秒前
旺旺大礼包完成签到,获得积分10
18秒前
大个应助swallow采纳,获得10
19秒前
独特觅翠举报333求助涉嫌违规
21秒前
22秒前
ttbear11发布了新的文献求助10
22秒前
QQ完成签到,获得积分10
23秒前
waytrue发布了新的文献求助10
23秒前
hhl完成签到,获得积分10
23秒前
浮游应助小杜采纳,获得10
25秒前
25秒前
26秒前
lily完成签到,获得积分10
26秒前
28秒前
29秒前
waytrue完成签到,获得积分10
29秒前
30秒前
31秒前
独特觅翠举报xxxx求助涉嫌违规
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
我是老大应助科研通管家采纳,获得10
32秒前
嘿嘿应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得30
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298879
求助须知:如何正确求助?哪些是违规求助? 4447312
关于积分的说明 13842156
捐赠科研通 4332840
什么是DOI,文献DOI怎么找? 2378366
邀请新用户注册赠送积分活动 1373656
关于科研通互助平台的介绍 1339240