Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: A critical inquiry

分级(工程) 人工智能 计算机科学 机器学习 人工神经网络 感知器 支持向量机 工程类 土木工程
作者
Taorui Zeng,Bijing Jin,Thomas Glade,Yangyi Xie,Ying Li,Yuhang Zhu,Kunlong Yin
出处
期刊:Catena [Elsevier BV]
卷期号:236: 107732-107732 被引量:29
标识
DOI:10.1016/j.catena.2023.107732
摘要

Current machine learning approaches to landslide susceptibility modeling often involve grading conditioning factors, a method characterized by substantial subjectivity and randomness. The necessity and rationality of such grading have sparked continued debate. Recognizing the potential profound impact of this grading on the results of models, we conducted an in-depth study focusing on four townships within the Wanzhou section of the Three Gorges Reservoir area. A comprehensive assessment was conducted using three traditional machine learning models, five ensemble learning models, and four deep learning models to evaluate the implications of continuous factor grading. Three grading strategies were explored: non-grading, equal intervals, and natural breaks. Further investigation was conducted to determine how various grade levels (e.g., 4, 6, 8, 12, 16, 20) affect model efficacy. Our analysis reveals that the Support Vector Machine (SVM) model performs optimally with an 8-level grading using natural breaks. In contrast, a decision tree (DT) and its associated ensemble models are more effective without grading. For Multi-Layer Perceptron Neural Network (MLPNN) and Convolutional Neural Networks (CNN) models, a natural breaks grading exceeding 8 levels is advisable. Gated Recurrent Unit (GRU) and Deep Neural Networks (DNN) models benefit from an equidistant grading strategy of over 12 levels, while Long Short-Term Memory Neural Networks (LSTM) models thrive with an equidistant grading surpassing 16 levels. This study is pioneering in introducing grading guidelines for machine learning models in landslide susceptibility modeling. Our findings offer invaluable insights for future research, setting a path towards more standardized practices in this field. This enhances the bridge between theoretical knowledge and its real-world application, promoting a more rigorous and systematic grading approach and advancing the standardization of landslide susceptibility modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助TangSEU采纳,获得10
1秒前
2秒前
2秒前
浅晨完成签到,获得积分10
2秒前
3秒前
科研通AI5应助ff采纳,获得10
3秒前
迷人若冰发布了新的文献求助10
3秒前
ohno耶耶耶完成签到,获得积分10
3秒前
4秒前
樟脑丸完成签到,获得积分10
5秒前
5秒前
7秒前
你看着我眼睛完成签到 ,获得积分10
7秒前
勤劳万言发布了新的文献求助50
7秒前
DoctorHao完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
难不倒我完成签到,获得积分10
12秒前
haimianbaobao完成签到 ,获得积分10
12秒前
Keira完成签到 ,获得积分10
15秒前
novia完成签到,获得积分10
16秒前
16秒前
科研狗发布了新的文献求助20
18秒前
19秒前
21秒前
beichuanheqi发布了新的文献求助10
22秒前
skbkbe完成签到 ,获得积分10
22秒前
龙龙发布了新的文献求助10
22秒前
成就的念双完成签到,获得积分10
23秒前
24秒前
nini完成签到,获得积分10
26秒前
伶俐的化蛹完成签到,获得积分10
26秒前
26秒前
thx发布了新的文献求助30
27秒前
28秒前
积极的尔竹完成签到,获得积分10
30秒前
宝宝言兼发布了新的文献求助10
31秒前
wanci应助饱满若灵采纳,获得10
31秒前
SHY发布了新的文献求助10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667828
求助须知:如何正确求助?哪些是违规求助? 3226294
关于积分的说明 9769102
捐赠科研通 2936239
什么是DOI,文献DOI怎么找? 1608345
邀请新用户注册赠送积分活动 759646
科研通“疑难数据库(出版商)”最低求助积分说明 735434