Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: A critical inquiry

分级(工程) 人工智能 计算机科学 机器学习 人工神经网络 感知器 支持向量机 工程类 土木工程
作者
Taorui Zeng,Bijing Jin,Thomas Glade,Yangyi Xie,Ying Li,Yuhang Zhu,Kunlong Yin
出处
期刊:Catena [Elsevier]
卷期号:236: 107732-107732 被引量:12
标识
DOI:10.1016/j.catena.2023.107732
摘要

Current machine learning approaches to landslide susceptibility modeling often involve grading conditioning factors, a method characterized by substantial subjectivity and randomness. The necessity and rationality of such grading have sparked continued debate. Recognizing the potential profound impact of this grading on the results of models, we conducted an in-depth study focusing on four townships within the Wanzhou section of the Three Gorges Reservoir area. A comprehensive assessment was conducted using three traditional machine learning models, five ensemble learning models, and four deep learning models to evaluate the implications of continuous factor grading. Three grading strategies were explored: non-grading, equal intervals, and natural breaks. Further investigation was conducted to determine how various grade levels (e.g., 4, 6, 8, 12, 16, 20) affect model efficacy. Our analysis reveals that the Support Vector Machine (SVM) model performs optimally with an 8-level grading using natural breaks. In contrast, a decision tree (DT) and its associated ensemble models are more effective without grading. For Multi-Layer Perceptron Neural Network (MLPNN) and Convolutional Neural Networks (CNN) models, a natural breaks grading exceeding 8 levels is advisable. Gated Recurrent Unit (GRU) and Deep Neural Networks (DNN) models benefit from an equidistant grading strategy of over 12 levels, while Long Short-Term Memory Neural Networks (LSTM) models thrive with an equidistant grading surpassing 16 levels. This study is pioneering in introducing grading guidelines for machine learning models in landslide susceptibility modeling. Our findings offer invaluable insights for future research, setting a path towards more standardized practices in this field. This enhances the bridge between theoretical knowledge and its real-world application, promoting a more rigorous and systematic grading approach and advancing the standardization of landslide susceptibility modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charm发布了新的文献求助200
刚刚
Huuu完成签到,获得积分10
2秒前
LLLJW发布了新的文献求助10
2秒前
隐形曼青应助马纹采纳,获得30
4秒前
7秒前
Jin发布了新的文献求助10
10秒前
易如反掌完成签到,获得积分10
10秒前
nini可可味完成签到,获得积分10
13秒前
13秒前
14秒前
勤奋的不斜完成签到 ,获得积分10
16秒前
马纹发布了新的文献求助30
19秒前
a1246778发布了新的文献求助10
20秒前
wei完成签到,获得积分10
21秒前
橘络完成签到 ,获得积分10
23秒前
不冰淇淋完成签到,获得积分10
24秒前
安静的虔发布了新的文献求助10
24秒前
852应助vvvvvv采纳,获得10
25秒前
26秒前
SYX发布了新的文献求助20
28秒前
憨豆豆完成签到,获得积分10
31秒前
32秒前
32秒前
35秒前
37秒前
ssw发布了新的文献求助10
37秒前
38秒前
汉堡包应助怕黑嘉熙采纳,获得10
39秒前
马大翔发布了新的文献求助10
40秒前
41秒前
诗篇发布了新的文献求助10
43秒前
43秒前
zz完成签到,获得积分10
43秒前
飘逸涛发布了新的文献求助10
43秒前
45秒前
木子完成签到,获得积分10
46秒前
Le_Chiot发布了新的文献求助10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得30
48秒前
Jasper应助科研通管家采纳,获得10
48秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164219
求助须知:如何正确求助?哪些是违规求助? 2814944
关于积分的说明 7907166
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317555
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228