Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: A critical inquiry

分级(工程) 人工智能 计算机科学 机器学习 人工神经网络 感知器 支持向量机 工程类 土木工程
作者
Taorui Zeng,Bijing Jin,Thomas Glade,Yangyi Xie,Ying Li,Yuhang Zhu,Kunlong Yin
出处
期刊:Catena [Elsevier]
卷期号:236: 107732-107732 被引量:29
标识
DOI:10.1016/j.catena.2023.107732
摘要

Current machine learning approaches to landslide susceptibility modeling often involve grading conditioning factors, a method characterized by substantial subjectivity and randomness. The necessity and rationality of such grading have sparked continued debate. Recognizing the potential profound impact of this grading on the results of models, we conducted an in-depth study focusing on four townships within the Wanzhou section of the Three Gorges Reservoir area. A comprehensive assessment was conducted using three traditional machine learning models, five ensemble learning models, and four deep learning models to evaluate the implications of continuous factor grading. Three grading strategies were explored: non-grading, equal intervals, and natural breaks. Further investigation was conducted to determine how various grade levels (e.g., 4, 6, 8, 12, 16, 20) affect model efficacy. Our analysis reveals that the Support Vector Machine (SVM) model performs optimally with an 8-level grading using natural breaks. In contrast, a decision tree (DT) and its associated ensemble models are more effective without grading. For Multi-Layer Perceptron Neural Network (MLPNN) and Convolutional Neural Networks (CNN) models, a natural breaks grading exceeding 8 levels is advisable. Gated Recurrent Unit (GRU) and Deep Neural Networks (DNN) models benefit from an equidistant grading strategy of over 12 levels, while Long Short-Term Memory Neural Networks (LSTM) models thrive with an equidistant grading surpassing 16 levels. This study is pioneering in introducing grading guidelines for machine learning models in landslide susceptibility modeling. Our findings offer invaluable insights for future research, setting a path towards more standardized practices in this field. This enhances the bridge between theoretical knowledge and its real-world application, promoting a more rigorous and systematic grading approach and advancing the standardization of landslide susceptibility modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助拼搏的学长采纳,获得10
1秒前
WXR发布了新的文献求助30
1秒前
何包蛋发布了新的文献求助10
2秒前
华仔应助留胡子的白柏采纳,获得30
2秒前
3秒前
大个应助邵shuo采纳,获得10
3秒前
普里克先森完成签到 ,获得积分10
5秒前
6秒前
123完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Owen应助阿华采纳,获得30
8秒前
8秒前
PetrichorF完成签到 ,获得积分10
8秒前
顺利发布了新的文献求助10
9秒前
科研通AI2S应助闹闹加油采纳,获得30
9秒前
10秒前
阿不思完成签到 ,获得积分10
11秒前
123发布了新的文献求助10
11秒前
852应助123456采纳,获得10
13秒前
zwxzghgz完成签到,获得积分10
13秒前
15秒前
拼搏的学长完成签到,获得积分10
15秒前
邵shuo发布了新的文献求助10
16秒前
lyyyyl发布了新的文献求助10
17秒前
研友_LpvQlZ发布了新的文献求助30
18秒前
烟花应助妃莫笑采纳,获得10
18秒前
惠慧完成签到,获得积分10
19秒前
科研通AI6应助123采纳,获得10
20秒前
panhaoyu完成签到,获得积分10
20秒前
顾矜应助qqq采纳,获得10
20秒前
and999完成签到,获得积分10
22秒前
panhaoyu发布了新的文献求助10
23秒前
23秒前
23秒前
辛巴先生完成签到 ,获得积分10
24秒前
CipherSage应助WXR采纳,获得10
24秒前
安详的自中完成签到,获得积分10
25秒前
合成不出来啊完成签到,获得积分10
25秒前
情怀应助老实的水蜜桃采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421856
求助须知:如何正确求助?哪些是违规求助? 4536767
关于积分的说明 14155159
捐赠科研通 4453354
什么是DOI,文献DOI怎么找? 2442854
邀请新用户注册赠送积分活动 1434227
关于科研通互助平台的介绍 1411370