Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: A critical inquiry

分级(工程) 人工智能 计算机科学 机器学习 人工神经网络 感知器 支持向量机 工程类 土木工程
作者
Taorui Zeng,Bijing Jin,Thomas Glade,Yangyi Xie,Ying Li,Yuhang Zhu,Kunlong Yin
出处
期刊:Catena [Elsevier BV]
卷期号:236: 107732-107732 被引量:29
标识
DOI:10.1016/j.catena.2023.107732
摘要

Current machine learning approaches to landslide susceptibility modeling often involve grading conditioning factors, a method characterized by substantial subjectivity and randomness. The necessity and rationality of such grading have sparked continued debate. Recognizing the potential profound impact of this grading on the results of models, we conducted an in-depth study focusing on four townships within the Wanzhou section of the Three Gorges Reservoir area. A comprehensive assessment was conducted using three traditional machine learning models, five ensemble learning models, and four deep learning models to evaluate the implications of continuous factor grading. Three grading strategies were explored: non-grading, equal intervals, and natural breaks. Further investigation was conducted to determine how various grade levels (e.g., 4, 6, 8, 12, 16, 20) affect model efficacy. Our analysis reveals that the Support Vector Machine (SVM) model performs optimally with an 8-level grading using natural breaks. In contrast, a decision tree (DT) and its associated ensemble models are more effective without grading. For Multi-Layer Perceptron Neural Network (MLPNN) and Convolutional Neural Networks (CNN) models, a natural breaks grading exceeding 8 levels is advisable. Gated Recurrent Unit (GRU) and Deep Neural Networks (DNN) models benefit from an equidistant grading strategy of over 12 levels, while Long Short-Term Memory Neural Networks (LSTM) models thrive with an equidistant grading surpassing 16 levels. This study is pioneering in introducing grading guidelines for machine learning models in landslide susceptibility modeling. Our findings offer invaluable insights for future research, setting a path towards more standardized practices in this field. This enhances the bridge between theoretical knowledge and its real-world application, promoting a more rigorous and systematic grading approach and advancing the standardization of landslide susceptibility modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不必要再讨论适合与否完成签到,获得积分0
刚刚
无情夏寒完成签到 ,获得积分10
1秒前
慕青应助马士全采纳,获得10
2秒前
xuzj应助科研通管家采纳,获得10
2秒前
Rubby应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
shiizii应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
ludong_0应助科研通管家采纳,获得10
3秒前
YeeYee发布了新的文献求助10
3秒前
冷酷的松思完成签到,获得积分10
3秒前
zgt01发布了新的文献求助10
4秒前
zhang完成签到,获得积分10
4秒前
江中完成签到 ,获得积分10
6秒前
6秒前
阿玖完成签到 ,获得积分10
7秒前
jiaolulu发布了新的文献求助10
9秒前
踏雪飞鸿完成签到,获得积分10
10秒前
hannah完成签到,获得积分10
10秒前
songvv发布了新的文献求助10
11秒前
一一一应助Bin_Liu采纳,获得10
12秒前
麻果完成签到,获得积分10
14秒前
OER完成签到,获得积分10
14秒前
伦语完成签到,获得积分20
14秒前
中陆完成签到,获得积分10
15秒前
16秒前
莫西莫西完成签到,获得积分10
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
xjh完成签到,获得积分10
21秒前
21秒前
lbnzd8g完成签到,获得积分10
23秒前
中海完成签到,获得积分10
23秒前
Ww完成签到,获得积分10
23秒前
伶俐不二完成签到,获得积分10
23秒前
XIAOJU_U完成签到 ,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022