Assessing the imperative of conditioning factor grading in machine learning-based landslide susceptibility modeling: A critical inquiry

分级(工程) 人工智能 计算机科学 机器学习 人工神经网络 感知器 支持向量机 工程类 土木工程
作者
Taorui Zeng,Bijing Jin,Thomas Glade,Yangyi Xie,Ying Li,Yuhang Zhu,Kunlong Yin
出处
期刊:Catena [Elsevier]
卷期号:236: 107732-107732 被引量:29
标识
DOI:10.1016/j.catena.2023.107732
摘要

Current machine learning approaches to landslide susceptibility modeling often involve grading conditioning factors, a method characterized by substantial subjectivity and randomness. The necessity and rationality of such grading have sparked continued debate. Recognizing the potential profound impact of this grading on the results of models, we conducted an in-depth study focusing on four townships within the Wanzhou section of the Three Gorges Reservoir area. A comprehensive assessment was conducted using three traditional machine learning models, five ensemble learning models, and four deep learning models to evaluate the implications of continuous factor grading. Three grading strategies were explored: non-grading, equal intervals, and natural breaks. Further investigation was conducted to determine how various grade levels (e.g., 4, 6, 8, 12, 16, 20) affect model efficacy. Our analysis reveals that the Support Vector Machine (SVM) model performs optimally with an 8-level grading using natural breaks. In contrast, a decision tree (DT) and its associated ensemble models are more effective without grading. For Multi-Layer Perceptron Neural Network (MLPNN) and Convolutional Neural Networks (CNN) models, a natural breaks grading exceeding 8 levels is advisable. Gated Recurrent Unit (GRU) and Deep Neural Networks (DNN) models benefit from an equidistant grading strategy of over 12 levels, while Long Short-Term Memory Neural Networks (LSTM) models thrive with an equidistant grading surpassing 16 levels. This study is pioneering in introducing grading guidelines for machine learning models in landslide susceptibility modeling. Our findings offer invaluable insights for future research, setting a path towards more standardized practices in this field. This enhances the bridge between theoretical knowledge and its real-world application, promoting a more rigorous and systematic grading approach and advancing the standardization of landslide susceptibility modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
power完成签到,获得积分10
1秒前
赵yy应助kulihara采纳,获得20
1秒前
wcl完成签到,获得积分10
2秒前
信徒完成签到,获得积分10
2秒前
烟花应助tzk采纳,获得10
2秒前
3秒前
Yhx123456完成签到,获得积分10
3秒前
coolman冰人发布了新的文献求助10
3秒前
打打应助Keyl采纳,获得10
3秒前
4秒前
4秒前
婆婆丁完成签到,获得积分0
5秒前
苗条的涟妖完成签到,获得积分20
5秒前
5秒前
5秒前
CipherSage应助姜彩秀采纳,获得10
5秒前
深情白风完成签到,获得积分10
6秒前
6秒前
诗瑶发布了新的文献求助10
6秒前
孝顺的飞荷完成签到,获得积分10
6秒前
舍曲林完成签到,获得积分10
6秒前
ky完成签到,获得积分20
6秒前
6秒前
NexusExplorer应助rong采纳,获得10
7秒前
隐形曼青应助kkk采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
今后应助silin采纳,获得10
7秒前
李洁发布了新的文献求助10
7秒前
北海未暖完成签到,获得积分10
8秒前
kiki发布了新的文献求助10
8秒前
SophieLiu发布了新的文献求助30
8秒前
Akim应助迟来的内啡肽采纳,获得10
8秒前
新火应助SXM采纳,获得20
9秒前
vagrant完成签到,获得积分10
9秒前
SciGPT应助义气的夜安采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
不偷懒就无敌完成签到,获得积分10
10秒前
10秒前
02完成签到 ,获得积分10
10秒前
gooooood发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744