Towards a Reliable Design of Geopolymer Concrete for Green Landscapes: A Comparative Study of Tree-Based and Regression-Based Models

树(集合论) 回归分析 回归 地聚合物水泥 计算机科学 工程类 土木工程 聚合物 数学 统计 机器学习 废物管理 粉煤灰 数学分析
作者
Ranran Wang,Jun Zhang,Yijun Lü,Shisong Ren,Jiandong Huang
出处
期刊:Buildings [MDPI AG]
卷期号:14 (3): 615-615 被引量:8
标识
DOI:10.3390/buildings14030615
摘要

The design of geopolymer concrete must meet more stringent requirements for the landscape, so understanding and designing geopolymer concrete with a higher compressive strength challenging. In the performance prediction of geopolymer concrete compressive strength, machine learning models have the advantage of being more accurate and faster. However, only a single machine learning model is usually used at present, there are few applications of ensemble learning models, and model optimization processes is lacking. Therefore, this paper proposes to use the Firefly Algorithm (AF) as an optimization tool to perform hyperparameter tuning on Logistic Regression (LR), Multiple Logistic Regression (MLR), decision tree (DT), and Random Forest (RF) models. At the same time, the reliability and efficiency of four integrated learning models were analyzed. The model was used to analyze the influencing factors of geopolymer concrete and determine the strength of their influencing ability. According to the experimental data, the RF-AF model had the lowest RMSE value. The RMSE value of the training set and test set were 4.0364 and 8.7202, respectively. The R value of the training set and test set were 0.9774 and 0.8915, respectively. Therefore, compared with the other three models, RF-AF has a stronger generalization ability and higher prediction accuracy. In addition, the molar concentration of NaOH was the most important influencing factors, and its influence was far greater than the other possible factors including NaOH content. Therefore, it is necessary to pay more attention to NaOH molarity when designing geopolymer concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助jajaqy采纳,获得10
1秒前
xh发布了新的文献求助10
1秒前
老张完成签到,获得积分10
1秒前
3秒前
cathylll完成签到 ,获得积分10
3秒前
华仔应助百里如雪采纳,获得10
3秒前
999发布了新的文献求助10
3秒前
山花鱼发布了新的文献求助10
4秒前
4秒前
茹果完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
哆小咪完成签到 ,获得积分10
9秒前
调研昵称发布了新的文献求助30
9秒前
科研通AI2S应助飞天小女警采纳,获得10
10秒前
山花鱼完成签到,获得积分10
11秒前
jajaqy发布了新的文献求助10
13秒前
科目三应助999采纳,获得10
14秒前
Sixa完成签到,获得积分10
14秒前
14秒前
olivia驳回了pcr163应助
14秒前
清茶淡水完成签到,获得积分10
17秒前
小李完成签到 ,获得积分10
18秒前
FashionBoy应助秘密采纳,获得10
18秒前
想毕业完成签到,获得积分10
18秒前
surain发布了新的文献求助30
18秒前
19秒前
pcr163应助PeGe采纳,获得50
22秒前
yanjiusheng完成签到,获得积分10
23秒前
23秒前
疯狂的安波完成签到,获得积分20
25秒前
SYY完成签到,获得积分20
26秒前
不安访冬完成签到,获得积分10
26秒前
落后的纸鹤完成签到,获得积分10
28秒前
SYY发布了新的文献求助10
28秒前
28秒前
Jackson发布了新的文献求助10
30秒前
30秒前
科研通AI2S应助surain采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079106
求助须知:如何正确求助?哪些是违规求助? 2731711
关于积分的说明 7520183
捐赠科研通 2380546
什么是DOI,文献DOI怎么找? 1262296
科研通“疑难数据库(出版商)”最低求助积分说明 611848
版权声明 597396