A bearing RUL prediction approach of vibration fault signal denoise modeling with Gate-CNN and Conv-Transformer encoder

编码器 振动 变压器 方位(导航) 计算机科学 旋转编码器 断层(地质) 电子工程 声学 电气工程 人工智能 工程类 电压 物理 地震学 地质学 操作系统
作者
Peng Huang,Yuanjin Wang,Yingkui Gu,Guangqi Qiu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066104-066104
标识
DOI:10.1088/1361-6501/ad2cd9
摘要

Abstract The operating conditions of rolling bearings are complex and variable, and their vibration monitoring signals are filled with strong noise interference, resulting in a low accuracy in remaining useful life (RUL) prediction. For this issue, this paper proposes a denoising method with vibration fault signals modeling, and a novel RUL prediction method with Gate-convolutional neural networks (CNN) and Conv-Transformer encoder. Firstly, the theoretical fault signal is obtained through the vibration fault signal model, and the quality of the extracted features is improved by the wavelet threshold denoising algorithm in the process of feature extraction and selection. Moreover, the CNN is combined with the gating mechanism to construct a feature extractor with the feature evaluation function, and the convolution layers are introduced into the transformer to expand the encoder’s ability to explore local information in temporal data. By using fixed-time step temporal features as the input to the prediction module and minimizing the Huber function as the optimization objective, the relationship between temporal features and RUL is obtained. The comparison with the existing state-of-the-art RUL methods illustrates that the combination of gate control and convolutional structure proposed in this paper can not only reduce the prediction error of the model but also improve its generalization ability and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whyee发布了新的文献求助10
1秒前
Anoxia完成签到,获得积分10
1秒前
2秒前
斯文败类应助优雅的抚琴采纳,获得10
3秒前
小李科研狗完成签到,获得积分10
3秒前
3秒前
sun关闭了sun文献求助
4秒前
4秒前
烟花应助帅仁123采纳,获得10
5秒前
大帅哥发布了新的文献求助10
5秒前
7秒前
Mr_I完成签到,获得积分10
8秒前
爆螺钉发布了新的文献求助10
8秒前
寒冷羞花完成签到,获得积分10
8秒前
shinhee发布了新的文献求助10
8秒前
8秒前
JamesPei应助一念来回采纳,获得10
10秒前
10秒前
10秒前
TIANYIN发布了新的文献求助10
11秒前
安静的棉花糖完成签到 ,获得积分10
11秒前
11秒前
ab完成签到,获得积分10
12秒前
12秒前
NicoLi应助小余采纳,获得10
12秒前
h1352216完成签到,获得积分10
12秒前
12秒前
13秒前
芒果桃子发布了新的文献求助10
13秒前
14秒前
杀殿发布了新的文献求助20
14秒前
15秒前
16秒前
16秒前
共享精神应助nicky采纳,获得10
16秒前
16秒前
淡定枕头应助zzzzzzzzzzz采纳,获得10
17秒前
17秒前
17秒前
陌路完成签到,获得积分10
17秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221784
求助须知:如何正确求助?哪些是违规求助? 2870476
关于积分的说明 8170735
捐赠科研通 2537406
什么是DOI,文献DOI怎么找? 1369415
科研通“疑难数据库(出版商)”最低求助积分说明 645510
邀请新用户注册赠送积分活动 619208