人工智能
先验概率
计算机科学
模式识别(心理学)
生成模型
图像融合
可解释性
概率逻辑
图像(数学)
贝叶斯概率
计算机视觉
生成语法
作者
Zixiang Zhao,Haowen Bai,Yuanzhi Zhu,Jiangshe Zhang,Shuang Xu,Yulun Zhang,Kai Zhang,Deyu Meng,Radu Timofte,Luc Van Gool
标识
DOI:10.1109/iccv51070.2023.00742
摘要
Multi-modality image fusion aims to combine different modalities to produce fused images that retain the complementary features of each modality, such as functional highlights and texture details. To leverage strong generative priors and address challenges such as unstable training and lack of interpretability for GAN-based generative methods, we propose a novel fusion algorithm based on the denoising diffusion probabilistic model (DDPM). The fusion task is formulated as a conditional generation problem under the DDPM sampling framework, which is further divided into an unconditional generation subproblem and a maximum likelihood subproblem. The latter is modeled in a hierarchical Bayesian manner with latent variables and inferred by the expectation-maximization (EM) algorithm. By integrating the inference solution into the diffusion sampling iteration, our method can generate high-quality fused images with natural image generative priors and cross-modality information from source images. Note that all we required is an unconditional pre-trained generative model, and no fine-tuning is needed. Our extensive experiments indicate that our approach yields promising fusion results in infrared-visible image fusion and medical image fusion. The code is available at https://github.com/Zhaozixiang1228/MMIF-DDFM.
科研通智能强力驱动
Strongly Powered by AbleSci AI