Fault diagnosis of rotating machinery using novel self-attention mechanism TCN with soft thresholding method

水准点(测量) 计算机科学 卷积神经网络 阈值 可靠性(半导体) 方位(导航) 断层(地质) 人工智能 机制(生物学) 深度学习 模式识别(心理学) 功率(物理) 哲学 物理 大地测量学 认识论 量子力学 地震学 地质学 图像(数学) 地理
作者
Li Ding,Qing Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad1eb3
摘要

Abstract Rotating machinery (e.g., rolling bearing and gearbox) are usually operated in high-risk and vulnerable environments such as time-varying loads and poor lubrication. Timely assessment of the operational status for rotating machinery is crucial to prevent damage caused by potential failure and shutdown, which significantly enhances the reliability of mechanical systems, prolongs the service life of critical components in rotating machinery, and minimizes unnecessary maintenance costs. To this regard, in this paper, a novel approach named self-attention mechanism combined time convolutional network with soft thresholding algorithm (SAM-TCN-ST) is proposed for fault intelligent recognition of rotating machinery. Specifically, the vibration signals are transformed into time-frequency graphs with distinct features utilizing the continuous wavelet transform (CWT), and then the proposed SAM-TCN-ST algorithm is employed for capturing essential data characteristics and classification performance. Eventually, the datasets from rolling bearings and gearbox are used for verifying the accuracy and effectiveness of the proposed method compared with state-of-the-art benchmark networks such as pure TCN, convolutional neural network (CNN) and long short-term memory (LSTM) models. Experimental results demonstrate that the recognition accuracy rate of the proposed SAM-TCN-ST is higher than that obtained from the benchmark methods. This research presents an intelligent and viable solution for achieving real-time monitoring of the status and detecting faults in rotating machinery, thereby expectedly enhancing the reliability of mechanical systems. Consequently, the proposed SAM-TCN-ST algorithm holds significant potential for application in prognostic and health management (PHM) practices related to rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zzz发布了新的文献求助10
2秒前
奋斗发布了新的文献求助10
4秒前
大尾猫完成签到,获得积分10
6秒前
7秒前
oldchen完成签到 ,获得积分10
8秒前
清爽的诗槐完成签到,获得积分10
9秒前
nenoaowu发布了新的文献求助10
9秒前
10秒前
吴效发布了新的文献求助10
11秒前
小巧的新波完成签到,获得积分10
11秒前
善学以致用应助neufy采纳,获得10
12秒前
不配.应助SYY采纳,获得20
14秒前
15秒前
15秒前
15秒前
黄小佳发布了新的文献求助30
18秒前
18秒前
薛喵喵喵喵喵喵完成签到,获得积分10
18秒前
cghmfgh完成签到,获得积分10
19秒前
20秒前
cui发布了新的文献求助10
21秒前
22秒前
小二郎应助Cyber_relic采纳,获得10
22秒前
王大禹发布了新的文献求助20
22秒前
复杂的扬应助勤劳的鹤轩采纳,获得10
24秒前
Akim应助斯文谷秋采纳,获得30
24秒前
24秒前
my发布了新的文献求助10
25秒前
葵葵发布了新的文献求助10
26秒前
wy1693207859完成签到,获得积分10
28秒前
28秒前
奋斗完成签到 ,获得积分10
29秒前
dd完成签到,获得积分10
29秒前
29秒前
30秒前
CipherSage应助葵葵采纳,获得10
30秒前
30秒前
怕黑绝山完成签到 ,获得积分10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236263
求助须知:如何正确求助?哪些是违规求助? 2881992
关于积分的说明 8224575
捐赠科研通 2549972
什么是DOI,文献DOI怎么找? 1378858
科研通“疑难数据库(出版商)”最低求助积分说明 648478
邀请新用户注册赠送积分活动 623979