Joint Cost Learning and Payload Allocation With Image-Wise Attention for Batch Steganography

有效载荷(计算) 计算机科学 隐写术 特征(语言学) 特征提取 卷积神经网络 人工智能 嵌入 模式识别(心理学) 机器学习 计算机网络 语言学 哲学 网络数据包
作者
Weixuan Tang,Zhili Zhou,Bin Li,Kim–Kwang Raymond Choo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2826-2839 被引量:1
标识
DOI:10.1109/tifs.2024.3354411
摘要

In recent years, although cost learning methods have made great progress in single-image steganography, its development in batch steganography is relatively slower, which is a more practical communication scenario in the real world. The difficulties are capturing the full view of the image batch and building connections between cost learning and payload allocation by neural networks. To address the issues, this paper proposes a cost learning framework for batch steganography called JoCoP (Joint Cost Learning and Payload Allocation), wherein the policy network is designed to learn the optimal embedding policies for a batch of images via the collaboration between a cost learning module and a payload allocation module. In specific layers of the policy network, in the cost learning module, the intermediate feature maps of embedding costs are extracted for different images independently, which are sent to the payload allocation module. In the payload allocation module, to implement implicit payload allocation, the feature maps corresponding to different images within the same batch are adjusted by an image-wise attention mechanism. Afterwards, these adjusted feature maps are returned to the cost learning module for subsequent feature extraction in the next layer. Owing to the collaboration between the two modules and the batch-level receptive field in the image-wise attention mechanism, the embedding costs and the payload allocation can be jointly optimized in an end-to-end manner. Experimental results show that the proposed JoCoP outperforms existing methods against both single-image steganalyzers and pooled steganalyzers based on feature extraction and convolutional neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NexusExplorer应助北夏采纳,获得10
1秒前
klicking完成签到,获得积分10
2秒前
必胜客看得开完成签到,获得积分10
2秒前
wu发布了新的文献求助10
5秒前
大糖糕僧发布了新的文献求助10
6秒前
7秒前
打打应助胡子采纳,获得10
8秒前
10秒前
10秒前
乐山乐水发布了新的文献求助20
10秒前
yyh完成签到,获得积分20
12秒前
cyf完成签到 ,获得积分10
12秒前
情怀应助张点心采纳,获得10
12秒前
载酒醉发布了新的文献求助10
12秒前
SciGPT应助坦率的向日葵采纳,获得10
13秒前
Fancy完成签到,获得积分20
13秒前
13秒前
阔达的无剑应助mgr采纳,获得20
14秒前
14秒前
汉堡包应助英勇的老头采纳,获得10
15秒前
yyh发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
19秒前
???发布了新的文献求助10
20秒前
高大绝义发布了新的文献求助10
21秒前
夕夜完成签到,获得积分10
21秒前
23秒前
离枝完成签到 ,获得积分10
23秒前
。。。发布了新的文献求助10
25秒前
科研通AI2S应助Dece采纳,获得10
25秒前
26秒前
羊羊羊完成签到,获得积分10
28秒前
28秒前
28秒前
28秒前
???完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161611
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897655
捐赠科研通 2471797
什么是DOI,文献DOI怎么找? 1316160
科研通“疑难数据库(出版商)”最低求助积分说明 631222
版权声明 602112