Gaussian mutation–orca predation algorithm–deep residual shrinkage network (DRSN)–temporal convolutional network (TCN)–random forest model: an advanced machine learning model for predicting monthly rainfall and filtering irrelevant data

残余物 随机森林 计算机科学 均方误差 深度学习 人工智能 卷积神经网络 数据集 特征选择 选型 提前停车 算法 粒子群优化 模式识别(心理学) 人工神经网络 数学 统计
作者
Mohammad Ehteram,Mahdie Afshari Nia,Fatemeh Panahi,Hanieh Shabanian
出处
期刊:Environmental Sciences Europe [Springer Science+Business Media]
卷期号:36 (1) 被引量:1
标识
DOI:10.1186/s12302-024-00841-9
摘要

Abstract Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random forest (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses advanced operators to extract temporal features and remove irrelevant features, it can improve the performance of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper introduces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一得一完成签到,获得积分10
2秒前
fd163c应助蛮牛采纳,获得10
2秒前
Diopp完成签到,获得积分20
2秒前
5秒前
orixero应助张俊敏采纳,获得10
5秒前
9秒前
JamesPei应助zhouleiwang采纳,获得10
10秒前
12秒前
15秒前
脑洞疼应助羽毛采纳,获得10
15秒前
16秒前
16秒前
秋刀鱼完成签到,获得积分10
17秒前
梓然发布了新的文献求助10
19秒前
20秒前
ayayaya发布了新的文献求助10
22秒前
22秒前
22秒前
不安的凝阳完成签到,获得积分10
23秒前
24秒前
负责的如松完成签到,获得积分10
25秒前
Li完成签到,获得积分10
26秒前
郭萌完成签到,获得积分10
27秒前
狼宝发布了新的文献求助10
28秒前
爆米花应助ayayaya采纳,获得10
29秒前
30秒前
whh发布了新的文献求助10
31秒前
薄荷发布了新的文献求助20
32秒前
34秒前
36秒前
斯耐欧完成签到,获得积分10
36秒前
Wmhuahuaood完成签到,获得积分20
37秒前
丰富的复天完成签到,获得积分10
37秒前
Dawn发布了新的文献求助10
38秒前
诚心翠霜发布了新的文献求助10
38秒前
39秒前
39秒前
完美世界应助怡然万声采纳,获得10
40秒前
Wmhuahuaood发布了新的文献求助10
41秒前
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736171
求助须知:如何正确求助?哪些是违规求助? 3279959
关于积分的说明 10017840
捐赠科研通 2996576
什么是DOI,文献DOI怎么找? 1644187
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749475