A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123061-123061 被引量:7
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei完成签到,获得积分10
刚刚
1秒前
Gaoxiong完成签到,获得积分20
2秒前
2秒前
sibo完成签到,获得积分10
3秒前
酥瓜完成签到 ,获得积分10
3秒前
八百标兵奔北坡完成签到,获得积分10
3秒前
菰蒲发布了新的文献求助10
4秒前
4秒前
奚娜发布了新的文献求助10
4秒前
争气发布了新的文献求助10
4秒前
4秒前
外向访卉发布了新的文献求助10
5秒前
5秒前
popcorn完成签到,获得积分10
5秒前
7秒前
Yang完成签到,获得积分10
8秒前
8秒前
8秒前
modesty发布了新的文献求助50
8秒前
zzzii完成签到,获得积分10
8秒前
菰蒲完成签到,获得积分10
9秒前
不安姿完成签到 ,获得积分10
9秒前
风_feng发布了新的文献求助10
10秒前
lingo完成签到 ,获得积分10
10秒前
11秒前
11秒前
strings完成签到,获得积分10
11秒前
zhhh发布了新的文献求助10
11秒前
科研通AI2S应助小蘑菇采纳,获得10
12秒前
bbz完成签到,获得积分10
12秒前
张雯思发布了新的文献求助10
12秒前
Abelsci应助Yang采纳,获得10
12秒前
WD发布了新的文献求助10
13秒前
theforth完成签到,获得积分10
13秒前
奚娜完成签到,获得积分10
14秒前
楠楠发布了新的文献求助20
14秒前
pdf发布了新的文献求助10
15秒前
洪汉完成签到,获得积分10
15秒前
shan完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439