A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 123061-123061 被引量:13
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚂蚁发布了新的文献求助10
刚刚
xiaobai123456发布了新的文献求助10
刚刚
1秒前
1秒前
闪闪星星完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
科目三应助曼波采纳,获得10
3秒前
承淮关注了科研通微信公众号
4秒前
黄子芮发布了新的文献求助10
4秒前
Microbiota完成签到,获得积分10
5秒前
hahajiang完成签到,获得积分10
5秒前
6秒前
xuan发布了新的文献求助10
6秒前
sss发布了新的文献求助10
7秒前
RJ发布了新的文献求助30
7秒前
科研通AI6应助babao采纳,获得10
8秒前
小周完成签到 ,获得积分10
8秒前
gong9456完成签到,获得积分10
8秒前
得鹿梦鱼发布了新的文献求助10
9秒前
luis应助文耳东采纳,获得10
10秒前
丘比特应助务实的南露采纳,获得10
11秒前
小徐发布了新的文献求助10
11秒前
Prime完成签到 ,获得积分10
11秒前
ZZ完成签到 ,获得积分10
12秒前
转山转水转出了自我完成签到,获得积分10
12秒前
binges on choco完成签到,获得积分10
12秒前
狂野的河马完成签到,获得积分0
13秒前
awrawsaf完成签到 ,获得积分10
13秒前
hyx完成签到,获得积分20
13秒前
14秒前
勤奋的松鼠完成签到,获得积分0
14秒前
14秒前
xuan完成签到,获得积分10
14秒前
甜甜电源完成签到 ,获得积分10
15秒前
15秒前
背后的鹭洋完成签到,获得积分0
15秒前
一壶古酒应助yyds采纳,获得50
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600240
求助须知:如何正确求助?哪些是违规求助? 4685922
关于积分的说明 14840705
捐赠科研通 4675920
什么是DOI,文献DOI怎么找? 2538610
邀请新用户注册赠送积分活动 1505696
关于科研通互助平台的介绍 1471162