亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123061-123061 被引量:10
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nickel完成签到,获得积分10
13秒前
27秒前
EliotFang发布了新的文献求助10
32秒前
沉沉完成签到 ,获得积分0
34秒前
56秒前
1分钟前
Frank发布了新的文献求助10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
EliotFang完成签到,获得积分10
1分钟前
fsznc完成签到 ,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
oleskarabach发布了新的文献求助10
2分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
开心完成签到 ,获得积分10
3分钟前
3分钟前
顾矜应助zsc采纳,获得10
3分钟前
榆果子发布了新的文献求助10
3分钟前
榆果子完成签到,获得积分10
4分钟前
我是笨蛋完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
荆棘鸟发布了新的文献求助10
4分钟前
正传阿飞完成签到,获得积分10
5分钟前
隐形曼青应助荆棘鸟采纳,获得10
5分钟前
荆棘鸟完成签到,获得积分10
5分钟前
5分钟前
Frank完成签到,获得积分10
5分钟前
鲤鱼听荷完成签到 ,获得积分10
6分钟前
6分钟前
tabblk发布了新的文献求助10
7分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
QCB完成签到 ,获得积分10
7分钟前
陈杰发布了新的文献求助10
7分钟前
宋艳芳完成签到,获得积分10
8分钟前
陈杰完成签到,获得积分10
8分钟前
传奇3应助蒙豆儿采纳,获得10
9分钟前
9分钟前
蒙豆儿发布了新的文献求助10
9分钟前
汉堡包应助科研通管家采纳,获得10
9分钟前
乐乐应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582317
求助须知:如何正确求助?哪些是违规求助? 4000095
关于积分的说明 12382127
捐赠科研通 3674975
什么是DOI,文献DOI怎么找? 2025631
邀请新用户注册赠送积分活动 1059307
科研通“疑难数据库(出版商)”最低求助积分说明 945946