A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 123061-123061 被引量:13
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rita发布了新的文献求助10
刚刚
嘿嘿嘿发布了新的文献求助10
1秒前
2秒前
2秒前
study发布了新的文献求助10
2秒前
misaka完成签到,获得积分10
2秒前
3秒前
zuoyanwin发布了新的文献求助20
3秒前
鳗鱼摇伽发布了新的文献求助10
4秒前
大老黑发布了新的文献求助10
6秒前
夜包子123完成签到,获得积分10
7秒前
执着的翠梅完成签到 ,获得积分10
8秒前
伶俐的草莓完成签到,获得积分10
9秒前
9秒前
拼搏的飞莲完成签到 ,获得积分10
9秒前
wsq完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
ss完成签到,获得积分10
13秒前
科研通AI2S应助鳗鱼摇伽采纳,获得10
13秒前
BlackP完成签到,获得积分10
14秒前
15秒前
16秒前
华仔应助柯白梦采纳,获得10
16秒前
song完成签到,获得积分10
17秒前
17秒前
文静的芮完成签到,获得积分10
17秒前
CQMZY_2025完成签到,获得积分10
19秒前
Evander发布了新的文献求助10
20秒前
大力出奇迹完成签到,获得积分10
21秒前
wei发布了新的文献求助10
21秒前
wasailinlaomu发布了新的文献求助10
21秒前
EchoH应助小绿孩不高兴采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
桂花载酒少年游完成签到 ,获得积分10
22秒前
24秒前
123发布了新的文献求助10
26秒前
情怀应助xin采纳,获得10
26秒前
无花果应助wei采纳,获得10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838