A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123061-123061 被引量:4
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助Hellowa采纳,获得10
刚刚
刚刚
小松鼠完成签到,获得积分10
刚刚
科研通AI5应助wanz采纳,获得30
刚刚
刚刚
1秒前
科研通AI2S应助哈尼采纳,获得10
1秒前
1秒前
陈艳林发布了新的文献求助10
1秒前
2秒前
Circle发布了新的文献求助10
2秒前
椰果应助sunrise采纳,获得50
3秒前
3秒前
11发布了新的文献求助10
3秒前
Mp4发布了新的文献求助10
4秒前
豆豆浆发布了新的文献求助10
4秒前
4秒前
lemon完成签到,获得积分10
4秒前
4秒前
rx发布了新的文献求助10
5秒前
Linazhu完成签到,获得积分10
5秒前
clarklkq完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI2S应助WOLO采纳,获得10
7秒前
7秒前
7秒前
小田完成签到,获得积分10
8秒前
sio完成签到,获得积分10
8秒前
YQ完成签到,获得积分20
9秒前
Xin应助lemon采纳,获得10
9秒前
10秒前
科研通AI5应助豆豆浆采纳,获得10
11秒前
丰富的小甜瓜完成签到,获得积分10
11秒前
再夕予发布了新的文献求助10
11秒前
程南完成签到,获得积分10
11秒前
元羞花发布了新的文献求助10
12秒前
莫三颜发布了新的文献求助10
12秒前
momo完成签到 ,获得积分10
12秒前
奕奕发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767694
求助须知:如何正确求助?哪些是违规求助? 3312340
关于积分的说明 10163291
捐赠科研通 3027644
什么是DOI,文献DOI怎么找? 1661614
邀请新用户注册赠送积分活动 794172
科研通“疑难数据库(出版商)”最低求助积分说明 756013