亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 123061-123061 被引量:13
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Earr完成签到 ,获得积分10
1秒前
嘻嘻哈哈发布了新的文献求助40
2秒前
星辰大海应助修辛采纳,获得10
3秒前
淡定的白昼完成签到 ,获得积分10
4秒前
上官若男应助黄金采纳,获得10
4秒前
6秒前
丘比特应助天大青年采纳,获得10
7秒前
9秒前
天天快乐应助感谢采纳,获得10
10秒前
花深粥完成签到 ,获得积分10
11秒前
20秒前
21秒前
22秒前
感谢发布了新的文献求助10
26秒前
27秒前
深情的楷瑞完成签到 ,获得积分10
28秒前
Roseanne完成签到 ,获得积分10
33秒前
avalanche应助洁净的千凡采纳,获得30
34秒前
aitianzhuoyi完成签到,获得积分10
34秒前
dingbeicn完成签到,获得积分10
35秒前
lhlhl完成签到,获得积分10
37秒前
ASD应助嘻嘻哈哈采纳,获得40
39秒前
xiaolang2004发布了新的文献求助10
39秒前
洁净的千凡完成签到,获得积分20
40秒前
小鲤鱼吃大菠萝完成签到,获得积分10
43秒前
cmmm完成签到 ,获得积分10
46秒前
年轻枫完成签到 ,获得积分10
46秒前
高天雨完成签到 ,获得积分10
51秒前
58秒前
1分钟前
1分钟前
wlp鹏完成签到,获得积分10
1分钟前
无花果应助MOOTEA采纳,获得10
1分钟前
丘比特应助嗯嗯采纳,获得10
1分钟前
1分钟前
香蕉觅云应助zyf采纳,获得10
1分钟前
1分钟前
xiaolang2004发布了新的文献求助10
1分钟前
lalala完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426257
求助须知:如何正确求助?哪些是违规求助? 4540076
关于积分的说明 14171541
捐赠科研通 4457844
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164