A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 123061-123061 被引量:13
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huihui完成签到,获得积分10
刚刚
5秒前
云深不知处完成签到,获得积分10
6秒前
7秒前
慕青应助泽锦臻采纳,获得10
11秒前
Sandy发布了新的文献求助30
12秒前
斯文败类应助schrodinger采纳,获得10
13秒前
uouuo完成签到 ,获得积分10
14秒前
siriuslee99完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
19秒前
21秒前
大个应助张文静采纳,获得10
21秒前
聪慧的鸣凤完成签到,获得积分10
21秒前
欣慰电脑发布了新的文献求助10
21秒前
sssss发布了新的文献求助10
21秒前
泽锦臻发布了新的文献求助10
24秒前
Maria完成签到,获得积分10
27秒前
28秒前
31秒前
天一完成签到,获得积分10
33秒前
冷锋面发布了新的文献求助10
33秒前
领导范儿应助小情绪采纳,获得10
34秒前
35秒前
万能图书馆应助lixin采纳,获得10
36秒前
张文静发布了新的文献求助10
37秒前
连夜雪完成签到,获得积分10
38秒前
38秒前
38秒前
沉默的板凳完成签到,获得积分20
43秒前
46秒前
无花果应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
布溜应助科研通管家采纳,获得10
46秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
蓝天应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得30
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560555
求助须知:如何正确求助?哪些是违规求助? 4645805
关于积分的说明 14676221
捐赠科研通 4586997
什么是DOI,文献DOI怎么找? 2516667
邀请新用户注册赠送积分活动 1490212
关于科研通互助平台的介绍 1461088