A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 123061-123061 被引量:13
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助杠赛来采纳,获得10
1秒前
2秒前
Zero完成签到,获得积分10
3秒前
hiter完成签到,获得积分10
5秒前
番茄炒蛋完成签到,获得积分10
5秒前
一只小学弱完成签到,获得积分10
6秒前
董帅完成签到,获得积分10
6秒前
风清扬发布了新的文献求助10
6秒前
kk完成签到 ,获得积分10
8秒前
未碎冰蓝完成签到,获得积分20
9秒前
万能图书馆应助Zhusy采纳,获得30
10秒前
10秒前
lili完成签到,获得积分10
10秒前
鸡鱼蚝发布了新的文献求助10
10秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
tranphucthinh发布了新的文献求助10
15秒前
15秒前
科研通AI6应助鸡鱼蚝采纳,获得10
17秒前
19秒前
赘婿应助One采纳,获得10
19秒前
赘婿应助DamienC采纳,获得10
19秒前
tranphucthinh完成签到,获得积分10
20秒前
treetree的应助YY再摆烂采纳,获得10
21秒前
orixero应助doctorc采纳,获得30
21秒前
杠赛来完成签到,获得积分10
22秒前
无语的大雁完成签到 ,获得积分10
23秒前
25秒前
26秒前
lllate完成签到 ,获得积分10
26秒前
27秒前
28秒前
YY再摆烂完成签到,获得积分10
28秒前
30秒前
林非鹿发布了新的文献求助10
32秒前
32秒前
33秒前
zhukeqinag发布了新的文献求助10
33秒前
欣欣子完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316