清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring new generation of characterization approaches for energy electrochemistry—from <italic>operando</italic> to artificial intelligence

化学 医学
作者
Yu Qiao,Hu Ren,Yu Gu,Fu-Jie Tang,Si-Heng Luo,H.Q. Zhang,Tian Jing-hua,Jun Cheng,Zhong‐Qun Tian
出处
期刊:Zhongguo kexue [Science China Press]
卷期号:54 (3): 338-352 被引量:5
标识
DOI:10.1360/ssc-2023-0222
摘要

Electrochemical (EC) technology plays an increasingly important role in energy and related fields, which presents significant challenges as well as opportunities for the fundamental research of electrochemistry. Electrochemical devices such as those for electrolysis (e.g., hydrogen production, chlor-alkali, aluminum), fuel cells, power batteries, energy storage batteries, often require a high working current density (such as larger than 1 A cm−2) and a high level of overpotential far from the electrochemical equilibrium (e.g., ±0.7 V). The operation conditions of such energy-conversion devices are complex and rapidly changing (e.g., the fluctuation of solar energy and wind energy at the supply end and the start and brake of electric vehicles at the consumption end of energy), and thus put extremely high requirements for the conversion efficiency, safety, and lifespan properties of devices. It is unprecedently challenging to identify efficiency, failure and safety mechanism for EC energy devices, of which one key issue is to characterize various interface structures and processes of EC devices with large-flow, high-density, and dynamically-changing charge, energy, and mass transfers. The commonly used in-situ and ex-situ characterization techniques cannot fully obtain energy, time, and space information, and it is difficult for them to characterize the key interfacial processes under real working conditions for elucidating their complicate mechanism. It is therefore imperative to develop a new generation of characterization methods and theories for energy electrochemistry. The main direction is to establish operando characterization techniques for real devices, and form a complete set of measurement system integrating the three types of ex-situ, in-situ and operando techniques for systematically detecting key intermediates, products, all components and interfaces as well as their crosstalk and coupling in real EC energy devices, thus to facilitate a comprehensive understanding of the interconnected complicate mechanism to further guide optimization and even innovation of related techniques and devices. Based on a close combination with artificial intelligence (AI), operando measurement with various spectroscopies and sensors is expected to reach each interfaces and bulks and their dynamic changes in energy devices. More importantly, it is proposed to further integrate various kinds of operando measurement modules with real-time regulation of energy devices, by which the operando data can be immediately analyzed via AI, and control decisions are made accordingly and rapidly feed back to the regulation center, so as to realize an AI-driven loop of Operando–Measurement–Analysis–Control (AI-LOMAC) of the whole real device. Integrating the three key discrete, time-consuming, and inefficient operating modules into one module is highly challenging but promising to develop into a new research paradigm, and provide an innovative pathway for the development of energy electrochemistry, interface science, and related fields, and even igniting new directions such as systems electrochemistry.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助飞快的冷亦采纳,获得10
5秒前
科研小白发布了新的文献求助10
14秒前
14秒前
19秒前
Akim应助supermaltose采纳,获得10
24秒前
方白秋完成签到,获得积分0
25秒前
栾小鱼完成签到,获得积分10
1分钟前
Ivan完成签到,获得积分10
1分钟前
可爱的函函应助紫荆采纳,获得10
2分钟前
2分钟前
w40701完成签到,获得积分10
2分钟前
芹123发布了新的文献求助10
2分钟前
紫荆发布了新的文献求助10
2分钟前
科研小白完成签到,获得积分10
2分钟前
芹123发布了新的文献求助10
3分钟前
超体完成签到 ,获得积分10
3分钟前
芹123完成签到,获得积分10
3分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
11发布了新的文献求助10
4分钟前
123完成签到 ,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
ukz37752发布了新的文献求助200
5分钟前
5分钟前
赘婿应助科研通管家采纳,获得50
5分钟前
5分钟前
nixgnef发布了新的文献求助10
5分钟前
科研通AI5应助armpit采纳,获得10
5分钟前
5分钟前
6分钟前
紫熊完成签到,获得积分10
6分钟前
JamesPei应助snowskating采纳,获得10
6分钟前
AmyHu完成签到,获得积分10
6分钟前
jiacheng发布了新的文献求助10
6分钟前
Alisha完成签到,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926803
求助须知:如何正确求助?哪些是违规求助? 4196382
关于积分的说明 13032610
捐赠科研通 3968735
什么是DOI,文献DOI怎么找? 2175117
邀请新用户注册赠送积分活动 1192274
关于科研通互助平台的介绍 1102675