Exploring new generation of characterization approaches for energy electrochemistry—from <italic>operando</italic> to artificial intelligence

化学 医学
作者
Yu Qiao,Hu Ren,Yu Gu,Fu-Jie Tang,Si-Heng Luo,H.Q. Zhang,Tian Jing-hua,Jun Cheng,Zhong‐Qun Tian
出处
期刊:Zhongguo kexue [Science China Press]
卷期号:54 (3): 338-352 被引量:5
标识
DOI:10.1360/ssc-2023-0222
摘要

Electrochemical (EC) technology plays an increasingly important role in energy and related fields, which presents significant challenges as well as opportunities for the fundamental research of electrochemistry. Electrochemical devices such as those for electrolysis (e.g., hydrogen production, chlor-alkali, aluminum), fuel cells, power batteries, energy storage batteries, often require a high working current density (such as larger than 1 A cm−2) and a high level of overpotential far from the electrochemical equilibrium (e.g., ±0.7 V). The operation conditions of such energy-conversion devices are complex and rapidly changing (e.g., the fluctuation of solar energy and wind energy at the supply end and the start and brake of electric vehicles at the consumption end of energy), and thus put extremely high requirements for the conversion efficiency, safety, and lifespan properties of devices. It is unprecedently challenging to identify efficiency, failure and safety mechanism for EC energy devices, of which one key issue is to characterize various interface structures and processes of EC devices with large-flow, high-density, and dynamically-changing charge, energy, and mass transfers. The commonly used in-situ and ex-situ characterization techniques cannot fully obtain energy, time, and space information, and it is difficult for them to characterize the key interfacial processes under real working conditions for elucidating their complicate mechanism. It is therefore imperative to develop a new generation of characterization methods and theories for energy electrochemistry. The main direction is to establish operando characterization techniques for real devices, and form a complete set of measurement system integrating the three types of ex-situ, in-situ and operando techniques for systematically detecting key intermediates, products, all components and interfaces as well as their crosstalk and coupling in real EC energy devices, thus to facilitate a comprehensive understanding of the interconnected complicate mechanism to further guide optimization and even innovation of related techniques and devices. Based on a close combination with artificial intelligence (AI), operando measurement with various spectroscopies and sensors is expected to reach each interfaces and bulks and their dynamic changes in energy devices. More importantly, it is proposed to further integrate various kinds of operando measurement modules with real-time regulation of energy devices, by which the operando data can be immediately analyzed via AI, and control decisions are made accordingly and rapidly feed back to the regulation center, so as to realize an AI-driven loop of Operando–Measurement–Analysis–Control (AI-LOMAC) of the whole real device. Integrating the three key discrete, time-consuming, and inefficient operating modules into one module is highly challenging but promising to develop into a new research paradigm, and provide an innovative pathway for the development of energy electrochemistry, interface science, and related fields, and even igniting new directions such as systems electrochemistry.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
星辰大海应助yls采纳,获得10
2秒前
公孙世往发布了新的文献求助10
3秒前
鱼鱼完成签到 ,获得积分20
3秒前
研友_Ze0vBn发布了新的文献求助10
5秒前
nan完成签到,获得积分10
5秒前
ZYZYbigZY发布了新的文献求助10
6秒前
21完成签到 ,获得积分10
7秒前
大模型应助无力大白菜采纳,获得10
7秒前
听闻墨笙完成签到,获得积分10
8秒前
柔弱山芙完成签到,获得积分10
9秒前
牛牛眉目完成签到,获得积分10
10秒前
亦安完成签到,获得积分10
14秒前
Rondab应助Alex采纳,获得200
15秒前
朝天椒完成签到,获得积分10
15秒前
ZYZYbigZY完成签到,获得积分10
16秒前
逗小妹完成签到 ,获得积分10
16秒前
仁爱的寻凝完成签到,获得积分10
18秒前
戈屿完成签到 ,获得积分10
21秒前
李李关注了科研通微信公众号
22秒前
xsss完成签到,获得积分10
23秒前
24秒前
lily完成签到,获得积分10
26秒前
眼睛大唯雪完成签到 ,获得积分10
26秒前
27秒前
Owen应助GgXxx采纳,获得10
27秒前
lyn发布了新的文献求助10
28秒前
太渊完成签到 ,获得积分10
28秒前
闲庭发布了新的文献求助10
29秒前
隐形曼青应助Derik采纳,获得10
31秒前
薄荷味的soda完成签到,获得积分10
36秒前
超级的诗兰完成签到,获得积分10
36秒前
老阎应助花痴的沂采纳,获得30
37秒前
SciGPT应助domingo采纳,获得10
37秒前
hhhhhhhhh完成签到,获得积分10
38秒前
arcremnant完成签到,获得积分10
39秒前
白河完成签到,获得积分10
39秒前
release枫完成签到,获得积分10
40秒前
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343