Exploring new generation of characterization approaches for energy electrochemistry—from <italic>operando</italic> to artificial intelligence

化学 医学
作者
Yu Qiao,Hu Ren,Yu Gu,Fu-Jie Tang,Si-Heng Luo,H.Q. Zhang,Tian Jing-hua,Jun Cheng,Zhong‐Qun Tian
出处
期刊:Zhongguo kexue [Science in China Press]
卷期号:54 (3): 338-352 被引量:5
标识
DOI:10.1360/ssc-2023-0222
摘要

Electrochemical (EC) technology plays an increasingly important role in energy and related fields, which presents significant challenges as well as opportunities for the fundamental research of electrochemistry. Electrochemical devices such as those for electrolysis (e.g., hydrogen production, chlor-alkali, aluminum), fuel cells, power batteries, energy storage batteries, often require a high working current density (such as larger than 1 A cm−2) and a high level of overpotential far from the electrochemical equilibrium (e.g., ±0.7 V). The operation conditions of such energy-conversion devices are complex and rapidly changing (e.g., the fluctuation of solar energy and wind energy at the supply end and the start and brake of electric vehicles at the consumption end of energy), and thus put extremely high requirements for the conversion efficiency, safety, and lifespan properties of devices. It is unprecedently challenging to identify efficiency, failure and safety mechanism for EC energy devices, of which one key issue is to characterize various interface structures and processes of EC devices with large-flow, high-density, and dynamically-changing charge, energy, and mass transfers. The commonly used in-situ and ex-situ characterization techniques cannot fully obtain energy, time, and space information, and it is difficult for them to characterize the key interfacial processes under real working conditions for elucidating their complicate mechanism. It is therefore imperative to develop a new generation of characterization methods and theories for energy electrochemistry. The main direction is to establish operando characterization techniques for real devices, and form a complete set of measurement system integrating the three types of ex-situ, in-situ and operando techniques for systematically detecting key intermediates, products, all components and interfaces as well as their crosstalk and coupling in real EC energy devices, thus to facilitate a comprehensive understanding of the interconnected complicate mechanism to further guide optimization and even innovation of related techniques and devices. Based on a close combination with artificial intelligence (AI), operando measurement with various spectroscopies and sensors is expected to reach each interfaces and bulks and their dynamic changes in energy devices. More importantly, it is proposed to further integrate various kinds of operando measurement modules with real-time regulation of energy devices, by which the operando data can be immediately analyzed via AI, and control decisions are made accordingly and rapidly feed back to the regulation center, so as to realize an AI-driven loop of Operando–Measurement–Analysis–Control (AI-LOMAC) of the whole real device. Integrating the three key discrete, time-consuming, and inefficient operating modules into one module is highly challenging but promising to develop into a new research paradigm, and provide an innovative pathway for the development of energy electrochemistry, interface science, and related fields, and even igniting new directions such as systems electrochemistry.


科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LaTeXer应助怕黑的飞柏采纳,获得50
1秒前
辛勤芷容发布了新的文献求助10
1秒前
wanci应助无情的琳采纳,获得10
3秒前
3秒前
3秒前
llj完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助30
6秒前
sanxuan发布了新的文献求助10
7秒前
香蕉觅云应助silence采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
二二二完成签到 ,获得积分10
9秒前
9秒前
轻轻张发布了新的文献求助10
9秒前
12秒前
憧憬完成签到,获得积分10
12秒前
hyeah应助简单采纳,获得10
13秒前
QinQin发布了新的文献求助10
15秒前
zl1733关注了科研通微信公众号
15秒前
正直的笑蓝完成签到,获得积分10
17秒前
NexusExplorer应助帅玉玉采纳,获得10
17秒前
17秒前
qq发布了新的文献求助10
18秒前
19秒前
荆玉豪发布了新的文献求助20
19秒前
zz完成签到 ,获得积分10
19秒前
20秒前
董董完成签到,获得积分20
20秒前
20秒前
不想学习发布了新的文献求助10
20秒前
liuxia完成签到,获得积分10
21秒前
21秒前
婷婷发布了新的文献求助10
22秒前
Winnie发布了新的文献求助10
22秒前
张靖雯发布了新的文献求助10
23秒前
心灵美鑫完成签到 ,获得积分10
24秒前
辛勤芷容完成签到,获得积分10
24秒前
乐乐应助QinQin采纳,获得10
24秒前
silence发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755