A Multi-Relational Graph Encoder Network for Fine-Grained Prediction of MiRNA-Disease Associations

疾病 计算机科学 小RNA 图形 计算生物学 理论计算机科学 生物 医学 基因 遗传学 病理
作者
Shengpeng Yu,Hong Wang,Jing Li,Jun Zhao,Cheng Liang,Yanshen Sun
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 45-56 被引量:1
标识
DOI:10.1109/tcbb.2023.3335007
摘要

MicroRNAs (miRNAs) are critical in diagnosing and treating various diseases. Automatically demystifying the interdependent relationships between miRNAs and diseases has recently made remarkable progress, but their fine-grained interactive relationships still need to be explored. We propose a multi-relational graph encoder network for fine-grained prediction of miRNA-disease associations (MRFGMDA), which uses practical and current datasets to construct a multi-relational graph encoder network to predict disease-related miRNAs and their specific relationship types (upregulation, downregulation, or dysregulation). We evaluated MRFGMDA and found that it accurately predicted miRNA-disease associations, which could have far-reaching implications for clinical medical analysis, early diagnosis, prevention, and treatment. Case analyses, Kaplan-Meier survival analysis, expression difference analysis, and immune infiltration analysis further demonstrated the effectiveness and feasibility of MRFGMDA in uncovering potential disease-related miRNAs. Overall, our work represents a significant step toward improving the prediction of miRNA-disease associations using a fine-grained approach could lead to more accurate diagnosis and treatment of diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longer完成签到 ,获得积分10
1秒前
2秒前
orixero应助冰糖葫芦采纳,获得30
4秒前
我是老大应助机智思真采纳,获得10
4秒前
4秒前
4秒前
成永福完成签到,获得积分10
5秒前
陌回发布了新的文献求助10
5秒前
aaaa发布了新的文献求助10
6秒前
tianruiyi完成签到,获得积分10
7秒前
陈橙橙完成签到,获得积分10
7秒前
mm发布了新的文献求助10
7秒前
8秒前
8秒前
ck完成签到,获得积分10
9秒前
nwj123654发布了新的文献求助10
9秒前
abu完成签到,获得积分20
10秒前
12秒前
11关闭了11文献求助
12秒前
水墨橙子发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
14秒前
14秒前
Sing完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
jiangjing发布了新的文献求助30
15秒前
15秒前
transition完成签到,获得积分10
16秒前
nwj123654完成签到,获得积分10
16秒前
16秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
17秒前
yuhaocao应助科研通管家采纳,获得20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222