已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving the electrochemical performance of Li-rich manganese-based cathode materials by surface treatment with triethylamine

电化学 阴极 容量损失 材料科学 三乙胺 电流密度 化学工程 比表面积 锂(药物) 无机化学 化学 电极 催化作用 冶金 物理化学 有机化学 内分泌学 工程类 物理 医学 量子力学
作者
Ao Li,Binfang He,Guangchao Jin,Dongmei Liu,Jingbo Chen
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:976: 172951-172951 被引量:4
标识
DOI:10.1016/j.jallcom.2023.172951
摘要

Li-rich manganese-based cathode material is expected to be extremely promising for next-generation lithium-ion batteries due to its high specific capacity derived from additional anion redox behavior and low cost of the main element manganese. However, the irreversible release of lattice oxygen results in poor structural stability and inferior electrochemical performances, such as low initial Coulomb efficiency, irreversible capacity decay and serious voltage decay, which limits its commercialization. Herein, a simple strategy to improve the structural stability and electrochemical performances by one-step treatment with triethylamine (TEA) at moderate temperature is reported. TEA was used as a surface treatment reagent to prepare the modified Li-rich manganese-based cathode materials with oxygen vacancies and local structural distortion on the surface. The presence of surface distortion layer and oxygen vacancies inhibits irreversible oxygen release. The result exhibits that initial Coulomb efficiency, rate performance and initial discharge specific capacities are improved. After 100 cycles at a current density of 1 C, the specific capacity of the surface-treated material is 204.3 mAh g-1 (172.6 mAh g-1 for the pristine material), with a capacity retention of 81.26%. Even at a high current density of 10 C, the discharge specific capacity of 139.4 mAh g-1 is still achieved, demonstrating the excellent electrochemical performance. This study provides a simple and effective strategy for constructing special surface structures on Li-rich manganese-based materials to achieve high performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ikun发布了新的文献求助10
1秒前
科研通AI5应助Songjia123采纳,获得30
2秒前
DD完成签到,获得积分10
3秒前
王晓宇发布了新的文献求助10
5秒前
大个应助布吉岛取厦明子采纳,获得10
6秒前
yyt发布了新的文献求助10
7秒前
orixero应助lvsehx采纳,获得10
8秒前
11秒前
彭于晏应助翠花采纳,获得10
12秒前
noneface完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
16秒前
XZY完成签到 ,获得积分10
17秒前
18秒前
所所应助ZHIXIANGWENG采纳,获得10
18秒前
科研通AI2S应助ZHIXIANGWENG采纳,获得10
18秒前
Jasper应助ZHIXIANGWENG采纳,获得10
18秒前
所所应助ZHIXIANGWENG采纳,获得10
18秒前
田様应助ZHIXIANGWENG采纳,获得10
18秒前
大个应助ZHIXIANGWENG采纳,获得10
18秒前
爆米花应助ZHIXIANGWENG采纳,获得10
19秒前
汉堡包应助ZHIXIANGWENG采纳,获得10
19秒前
wanci应助ZHIXIANGWENG采纳,获得10
19秒前
科研通AI2S应助ZHIXIANGWENG采纳,获得10
19秒前
19秒前
袁大头发布了新的文献求助10
20秒前
21秒前
李昕123发布了新的文献求助10
23秒前
初雪平寒发布了新的文献求助10
24秒前
袁大头发布了新的文献求助10
25秒前
lvsehx发布了新的文献求助10
25秒前
机智大有完成签到,获得积分10
25秒前
26秒前
今后应助小陈子采纳,获得10
26秒前
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Effects of surfactant concentration on the microstructures of TiO2 hollow spheres by hydrothermal method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561680
求助须知:如何正确求助?哪些是违规求助? 3135271
关于积分的说明 9411778
捐赠科研通 2835787
什么是DOI,文献DOI怎么找? 1558642
邀请新用户注册赠送积分活动 728413
科研通“疑难数据库(出版商)”最低求助积分说明 716806