Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer

医学 分级(工程) 外科肿瘤学 乳腺癌 比例危险模型 内科学 肿瘤科 危险系数 放射科 病理 癌症 置信区间 土木工程 工程类
作者
Abhinav Sharma,Philippe Weitz,Yinxi Wang,Bojing Liu,Johan Vallon‐Christersson,Johan Hartman,Mattias Rantalainen
出处
期刊:Breast Cancer Research [Springer Nature]
卷期号:26 (1) 被引量:2
标识
DOI:10.1186/s13058-024-01770-4
摘要

Abstract Background Histological grade is a well-known prognostic factor that is routinely assessed in breast tumours. However, manual assessment of Nottingham Histological Grade (NHG) has high inter-assessor and inter-laboratory variability, causing uncertainty in grade assignments. To address this challenge, we developed and validated a three-level NHG-like deep learning-based histological grade model (predGrade). The primary performance evaluation focuses on prognostic performance. Methods This observational study is based on two patient cohorts (SöS-BC-4, N = 2421 (training and internal test); SCAN-B-Lund, N = 1262 (test)) that include routine histological whole-slide images (WSIs) together with patient outcomes. A deep convolutional neural network (CNN) model with an attention mechanism was optimised for the classification of the three-level histological grading (NHG) from haematoxylin and eosin-stained WSIs. The prognostic performance was evaluated by time-to-event analysis of recurrence-free survival and compared to clinical NHG grade assignments in the internal test set as well as in the fully independent external test cohort. Results We observed effect sizes (hazard ratio) for grade 3 versus 1, for the conventional NHG method (HR = 2.60 (1.18–5.70 95%CI, p -value = 0.017)) and the deep learning model (HR = 2.27, 95%CI 1.07–4.82, p -value = 0.033) on the internal test set after adjusting for established clinicopathological risk factors. In the external test set, the unadjusted HR for clinical NHG 2 versus 1 was estimated to be 2.59 ( p -value = 0.004) and clinical NHG 3 versus 1 was estimated to be 3.58 ( p -value < 0.001). For predGrade, the unadjusted HR for predGrade 2 versus 1 HR = 2.52 ( p -value = 0.030), and 4.07 ( p -value = 0.001) for preGrade 3 versus 1 was observed in the independent external test set. In multivariable analysis, HR estimates for neither clinical NHG nor predGrade were found to be significant ( p -value > 0.05). We tested for differences in HR estimates between NHG and predGrade in the independent test set and found no significant difference between the two classification models ( p -value > 0.05), confirming similar prognostic performance between conventional NHG and predGrade. Conclusion Routine histopathology assessment of NHG has a high degree of inter-assessor variability, motivating the development of model-based decision support to improve reproducibility in histological grading. We found that the proposed model (predGrade) provides a similar prognostic performance as clinical NHG. The results indicate that deep CNN-based models can be applied for breast cancer histological grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YiXianCoA完成签到 ,获得积分10
刚刚
和谐亦瑶完成签到,获得积分10
1秒前
ikomae发布了新的文献求助10
3秒前
SciGPT应助surou采纳,获得10
4秒前
乐乐应助活泼的烙采纳,获得10
4秒前
调研昵称发布了新的文献求助10
5秒前
5秒前
鲜艳的冰棍完成签到,获得积分10
6秒前
芒果完成签到 ,获得积分10
8秒前
QXR完成签到,获得积分10
10秒前
852应助科研通管家采纳,获得10
13秒前
萧水白应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得200
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得50
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
充电宝应助dd采纳,获得10
17秒前
Abmony完成签到,获得积分10
17秒前
zwy应助系统提示采纳,获得10
17秒前
无花果应助扭一扭泡一泡采纳,获得10
17秒前
风中小刺猬完成签到,获得积分10
18秒前
Nodens发布了新的文献求助30
18秒前
林撞树完成签到,获得积分10
19秒前
20秒前
21秒前
人生如梦 往事随风 1991完成签到 ,获得积分10
21秒前
活泼的烙发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
小野发布了新的文献求助10
26秒前
毛豆应助系统提示采纳,获得10
27秒前
iris发布了新的文献求助10
27秒前
1699Z发布了新的文献求助30
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289467
求助须知:如何正确求助?哪些是违规求助? 2926438
关于积分的说明 8427229
捐赠科研通 2597679
什么是DOI,文献DOI怎么找? 1417284
科研通“疑难数据库(出版商)”最低求助积分说明 659669
邀请新用户注册赠送积分活动 642133