Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer

医学 分级(工程) 外科肿瘤学 乳腺癌 比例危险模型 内科学 肿瘤科 危险系数 放射科 病理 癌症 置信区间 土木工程 工程类
作者
Abhinav Sharma,Philippe Weitz,Yinxi Wang,Bojing Liu,Johan Vallon‐Christersson,Johan Hartman,Mattias Rantalainen
出处
期刊:Breast Cancer Research [Springer Nature]
卷期号:26 (1) 被引量:2
标识
DOI:10.1186/s13058-024-01770-4
摘要

Abstract Background Histological grade is a well-known prognostic factor that is routinely assessed in breast tumours. However, manual assessment of Nottingham Histological Grade (NHG) has high inter-assessor and inter-laboratory variability, causing uncertainty in grade assignments. To address this challenge, we developed and validated a three-level NHG-like deep learning-based histological grade model (predGrade). The primary performance evaluation focuses on prognostic performance. Methods This observational study is based on two patient cohorts (SöS-BC-4, N = 2421 (training and internal test); SCAN-B-Lund, N = 1262 (test)) that include routine histological whole-slide images (WSIs) together with patient outcomes. A deep convolutional neural network (CNN) model with an attention mechanism was optimised for the classification of the three-level histological grading (NHG) from haematoxylin and eosin-stained WSIs. The prognostic performance was evaluated by time-to-event analysis of recurrence-free survival and compared to clinical NHG grade assignments in the internal test set as well as in the fully independent external test cohort. Results We observed effect sizes (hazard ratio) for grade 3 versus 1, for the conventional NHG method (HR = 2.60 (1.18–5.70 95%CI, p -value = 0.017)) and the deep learning model (HR = 2.27, 95%CI 1.07–4.82, p -value = 0.033) on the internal test set after adjusting for established clinicopathological risk factors. In the external test set, the unadjusted HR for clinical NHG 2 versus 1 was estimated to be 2.59 ( p -value = 0.004) and clinical NHG 3 versus 1 was estimated to be 3.58 ( p -value < 0.001). For predGrade, the unadjusted HR for predGrade 2 versus 1 HR = 2.52 ( p -value = 0.030), and 4.07 ( p -value = 0.001) for preGrade 3 versus 1 was observed in the independent external test set. In multivariable analysis, HR estimates for neither clinical NHG nor predGrade were found to be significant ( p -value > 0.05). We tested for differences in HR estimates between NHG and predGrade in the independent test set and found no significant difference between the two classification models ( p -value > 0.05), confirming similar prognostic performance between conventional NHG and predGrade. Conclusion Routine histopathology assessment of NHG has a high degree of inter-assessor variability, motivating the development of model-based decision support to improve reproducibility in histological grading. We found that the proposed model (predGrade) provides a similar prognostic performance as clinical NHG. The results indicate that deep CNN-based models can be applied for breast cancer histological grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗实发布了新的文献求助10
1秒前
1秒前
大模型应助LL采纳,获得10
1秒前
33333发布了新的文献求助10
1秒前
自觉秋发布了新的文献求助10
2秒前
啱啱完成签到,获得积分10
2秒前
在水一方应助呆萌的秋天采纳,获得10
2秒前
暴打小猪仔完成签到,获得积分10
2秒前
王w完成签到 ,获得积分10
3秒前
4秒前
5秒前
南瓜咸杏完成签到,获得积分10
5秒前
陈甸甸完成签到,获得积分10
5秒前
韦威风发布了新的文献求助10
6秒前
6秒前
king完成签到,获得积分10
6秒前
qweerrtt发布了新的文献求助10
7秒前
余三浪完成签到,获得积分10
7秒前
8秒前
lixoii发布了新的文献求助20
8秒前
豌豆射手发布了新的文献求助10
9秒前
科研通AI2S应助k7采纳,获得10
9秒前
wszldmn完成签到,获得积分10
9秒前
坚定的亦绿完成签到,获得积分10
10秒前
10秒前
yurh完成签到,获得积分10
10秒前
小朋友完成签到,获得积分10
11秒前
华仔应助小王采纳,获得10
11秒前
彭于晏应助乔乔采纳,获得10
11秒前
11秒前
1199完成签到,获得积分10
11秒前
11秒前
南瓜完成签到 ,获得积分10
12秒前
eric曾完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
韦威风完成签到,获得积分10
15秒前
请叫我风吹麦浪应助cc采纳,获得30
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762