Atomistic study on effects of solute atoms on energy profile of edge dislocation mobility in FCC-Cu alloys

材料科学 位错 GSM演进的增强数据速率 凝聚态物理 分子动力学 结晶学 复合材料 计算化学 电信 化学 物理 计算机科学
作者
Chiharu Kura,Masato Wakeda,Kazushi Hayashi,Takahito Ohmura
出处
期刊:Materials today communications [Elsevier BV]
卷期号:: 108242-108242
标识
DOI:10.1016/j.mtcomm.2024.108242
摘要

Solid-solution strengthening is an effective method to increase the mechanical strength of metal alloys. Revealing the solid-solution strengthening mechanism based on the energy profile of the dislocation motion is vital for the non-empirical development of high-strength metal alloys. This study provides detailed energy profiles (i.e., energy surfaces) of the edge dislocation gliding motion under the effect of solute atoms, as well as the atomic-scale origin of solute strengthening in face-centered cubic (FCC) Cu alloys. The maximum shear stress (τmax) required for the dislocation to leave the solute atoms (Ni, Co, and Mo, all with different sizes and stacking fault effects) was qualitatively evaluated by finite temperature molecular dynamics simulations. By the nudged elastic band (NEB) analysis, we determined the atomistic origin of the energy barrier for the edge dislocation motion and the maximum force required to overcome the solute pinning effect (i.e., depinning force, FNEB) in binary Cu alloys. By linking FNEB to the size misfit, a theoretical prediction model based on size effects and the volumetric strain field was used and can qualitatively explain the increment in the maximum shear stress (Δτmax) by the solute atoms. These results provide an atomistic basis for the prediction of the solute-strengthening effect correlated with the edge dislocation motion in wide FCC systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枣木完成签到 ,获得积分10
刚刚
思源应助健壮的尔烟采纳,获得10
刚刚
浮游应助kkkk采纳,获得10
4秒前
大模型应助leonieliu采纳,获得10
4秒前
雷雷发布了新的文献求助10
4秒前
5秒前
香蕉觅云应助隔壁老韩采纳,获得10
5秒前
T_MC郭完成签到,获得积分10
5秒前
CodeCraft应助健壮的尔烟采纳,获得10
6秒前
6秒前
善学以致用应助任性映秋采纳,获得10
6秒前
dwbh完成签到,获得积分10
7秒前
Kiki完成签到 ,获得积分10
8秒前
田様应助ZhouQixing采纳,获得10
10秒前
今后应助athenalin1988采纳,获得10
10秒前
星辰大海应助健壮的尔烟采纳,获得10
10秒前
11秒前
桐桐应助poker采纳,获得30
11秒前
枣木发布了新的文献求助10
11秒前
在水一方应助abcd_1067采纳,获得10
12秒前
脑洞疼应助蓝风铃采纳,获得10
14秒前
14秒前
15秒前
15秒前
领导范儿应助比格采纳,获得10
16秒前
17秒前
Owen应助笑哦采纳,获得30
18秒前
19秒前
浮游应助Han采纳,获得10
19秒前
moon发布了新的文献求助10
19秒前
科研通AI2S应助Vizz采纳,获得10
20秒前
知非发布了新的文献求助10
21秒前
浮游应助犹豫小蚂蚁采纳,获得10
21秒前
guojingjing发布了新的文献求助10
23秒前
23秒前
23秒前
Yun yun发布了新的文献求助10
24秒前
小丑发布了新的文献求助10
25秒前
慢慢发布了新的文献求助10
25秒前
changping应助蓝风铃采纳,获得10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228