Variable linear transformation improved physics-informed neural networks to solve thin-layer flow problems

规范化(社会学) 人工神经网络 计算机科学 缩放比例 应用数学 变量(数学) 反向 统计物理学 数学 数学优化 人工智能 物理 数学分析 几何学 社会学 人类学
作者
Jiahao Wu,Yuxin Wu,Guihua Zhang,Yang Zhang
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:500: 112761-112761 被引量:10
标识
DOI:10.1016/j.jcp.2024.112761
摘要

Physics-informed neural networks (PINNs) have attracted wide attention due to their ability to seamlessly embed the learning process with physical laws and their considerable success in solving forward and inverse differential equation (DE) problems. While most studies are improving the learning process and network architecture of PINNs, less attention has been paid to the modification of the DE system, which may play an important role in addressing some limitations of PINNs. One of the simplest modifications that can be implemented to all DE systems is the variable linear transformation (VLT). Therefore, in this work, we propose the VLT-PINNs that solve the DE systems of the linear-transformed variables instead of the original ones. To clearly illustrate the importance of prior knowledge in determining the VLT parameters, we choose the thin-layer flow problems as our focus. Ten related cases were tested, including the jet flows, wake flows, mixing layers, boundary layers and Kovasznay flows. Based on the principle of normalization and for a better match of the DE system to the preference of NNs, we identify three principles for determining the VLT parameters: magnitude normalization for dependent variables (principle 1), local normalization for independent variables (principle 2), and appropriate scaling for physics-related parameters in inverse problems (principle 3). The VLT-PINNs with the VLT parameters suggested by the proposed principles show excellent performance over all the test cases, while the results are quite poor with the VLT parameters suggested by traditional linear transformations, such as nondimensionalization and global normalization. Comparison studies also show that only under the constraints of the VLT principles can we obtain satisfactory results. Besides, we find tanh is more appropriate as the activation function than sin for thin-layer flow problems, from both posteriori results and priori analyses with physical intuition. We highlight that our VLT method is an attempt to combine the three advantages of accuracy, universality and simplicity, and hope that it can provide new insights into the better integration of prior knowledge, physical intuition and the nature of NNs. The code for this paper is available on https://github.com/CAME-THU/VLT-PINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助时笙采纳,获得30
1秒前
Hello应助wjx采纳,获得10
1秒前
2秒前
2秒前
自由山槐发布了新的文献求助30
3秒前
希望天下0贩的0应助Guai采纳,获得10
3秒前
3秒前
4秒前
阿冲发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
just123发布了新的文献求助10
6秒前
友好灵阳发布了新的文献求助10
6秒前
6秒前
黑水军完成签到,获得积分10
7秒前
充电宝应助zwying采纳,获得10
8秒前
就是我发布了新的文献求助10
8秒前
9秒前
9秒前
123hhhhhh完成签到,获得积分10
9秒前
9秒前
沉默的便当完成签到,获得积分20
9秒前
9秒前
hhhh发布了新的文献求助10
9秒前
WSS发布了新的文献求助10
10秒前
shiny完成签到,获得积分10
10秒前
10秒前
10秒前
桐桐应助秋思冬念采纳,获得10
11秒前
加贝发布了新的文献求助10
11秒前
11秒前
隔窗听雨发布了新的文献求助10
11秒前
moon发布了新的文献求助10
11秒前
赘婿应助若n采纳,获得10
12秒前
牛拉犁发布了新的文献求助10
12秒前
12秒前
李健应助MZG采纳,获得10
13秒前
打打应助wjx采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330723
求助须知:如何正确求助?哪些是违规求助? 4470169
关于积分的说明 13912355
捐赠科研通 4363480
什么是DOI,文献DOI怎么找? 2396987
邀请新用户注册赠送积分活动 1390354
关于科研通互助平台的介绍 1361093