Variable linear transformation improved physics-informed neural networks to solve thin-layer flow problems

规范化(社会学) 人工神经网络 计算机科学 缩放比例 应用数学 变量(数学) 反向 统计物理学 数学 数学优化 人工智能 物理 数学分析 几何学 社会学 人类学
作者
Jiahao Wu,Yuxin Wu,Guihua Zhang,Yang Zhang
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:500: 112761-112761 被引量:10
标识
DOI:10.1016/j.jcp.2024.112761
摘要

Physics-informed neural networks (PINNs) have attracted wide attention due to their ability to seamlessly embed the learning process with physical laws and their considerable success in solving forward and inverse differential equation (DE) problems. While most studies are improving the learning process and network architecture of PINNs, less attention has been paid to the modification of the DE system, which may play an important role in addressing some limitations of PINNs. One of the simplest modifications that can be implemented to all DE systems is the variable linear transformation (VLT). Therefore, in this work, we propose the VLT-PINNs that solve the DE systems of the linear-transformed variables instead of the original ones. To clearly illustrate the importance of prior knowledge in determining the VLT parameters, we choose the thin-layer flow problems as our focus. Ten related cases were tested, including the jet flows, wake flows, mixing layers, boundary layers and Kovasznay flows. Based on the principle of normalization and for a better match of the DE system to the preference of NNs, we identify three principles for determining the VLT parameters: magnitude normalization for dependent variables (principle 1), local normalization for independent variables (principle 2), and appropriate scaling for physics-related parameters in inverse problems (principle 3). The VLT-PINNs with the VLT parameters suggested by the proposed principles show excellent performance over all the test cases, while the results are quite poor with the VLT parameters suggested by traditional linear transformations, such as nondimensionalization and global normalization. Comparison studies also show that only under the constraints of the VLT principles can we obtain satisfactory results. Besides, we find tanh is more appropriate as the activation function than sin for thin-layer flow problems, from both posteriori results and priori analyses with physical intuition. We highlight that our VLT method is an attempt to combine the three advantages of accuracy, universality and simplicity, and hope that it can provide new insights into the better integration of prior knowledge, physical intuition and the nature of NNs. The code for this paper is available on https://github.com/CAME-THU/VLT-PINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瑾玉完成签到,获得积分10
1秒前
3秒前
Akim应助duckspy采纳,获得10
3秒前
那种完成签到,获得积分10
3秒前
liuyanq完成签到,获得积分20
3秒前
4秒前
普鲁卡因发布了新的文献求助10
5秒前
加油杨完成签到 ,获得积分10
6秒前
liuyanq发布了新的文献求助10
9秒前
随风完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
米九完成签到,获得积分10
16秒前
zhao完成签到,获得积分10
19秒前
普鲁卡因发布了新的文献求助10
19秒前
zj完成签到,获得积分10
25秒前
蓝橙完成签到,获得积分10
26秒前
30秒前
GD88完成签到,获得积分10
31秒前
糟糕的梨愁完成签到,获得积分10
32秒前
莫西莫西完成签到 ,获得积分10
33秒前
小趴蔡完成签到 ,获得积分10
35秒前
唐唐发布了新的文献求助10
35秒前
飘逸剑身完成签到,获得积分10
38秒前
airtermis完成签到 ,获得积分10
38秒前
gfasdjsjdsjd完成签到,获得积分10
39秒前
39秒前
杨宁完成签到 ,获得积分10
39秒前
MchemG应助transition采纳,获得20
40秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
lxy发布了新的文献求助10
43秒前
gfasdjsjdsjd发布了新的文献求助10
44秒前
JCao727完成签到,获得积分10
44秒前
44秒前
45秒前
OAHCIL完成签到 ,获得积分10
46秒前
lixueao发布了新的文献求助10
47秒前
无辜的行云完成签到 ,获得积分0
50秒前
FIN应助gfasdjsjdsjd采纳,获得20
52秒前
今后应助gfasdjsjdsjd采纳,获得10
52秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022