Variable linear transformation improved physics-informed neural networks to solve thin-layer flow problems

规范化(社会学) 人工神经网络 计算机科学 缩放比例 应用数学 变量(数学) 反向 统计物理学 数学 数学优化 人工智能 物理 数学分析 几何学 社会学 人类学
作者
Jiahao Wu,Yuxin Wu,Guihua Zhang,Yang Zhang
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:500: 112761-112761
标识
DOI:10.1016/j.jcp.2024.112761
摘要

Physics-informed neural networks (PINNs) have attracted wide attention due to their ability to seamlessly embed the learning process with physical laws and their considerable success in solving forward and inverse differential equation (DE) problems. While most studies are improving the learning process and network architecture of PINNs, less attention has been paid to the modification of the DE system, which may play an important role in addressing some limitations of PINNs. One of the simplest modifications that can be implemented to all DE systems is the variable linear transformation (VLT). Therefore, in this work, we propose the VLT-PINNs that solve the DE systems of the linear-transformed variables instead of the original ones. To clearly illustrate the importance of prior knowledge in determining the VLT parameters, we choose the thin-layer flow problems as our focus. Ten related cases were tested, including the jet flows, wake flows, mixing layers, boundary layers and Kovasznay flows. Based on the principle of normalization and for a better match of the DE system to the preference of NNs, we identify three principles for determining the VLT parameters: magnitude normalization for dependent variables (principle 1), local normalization for independent variables (principle 2), and appropriate scaling for physics-related parameters in inverse problems (principle 3). The VLT-PINNs with the VLT parameters suggested by the proposed principles show excellent performance over all the test cases, while the results are quite poor with the VLT parameters suggested by traditional linear transformations, such as nondimensionalization and global normalization. Comparison studies also show that only under the constraints of the VLT principles can we obtain satisfactory results. Besides, we find tanh is more appropriate as the activation function than sin for thin-layer flow problems, from both posteriori results and priori analyses with physical intuition. We highlight that our VLT method is an attempt to combine the three advantages of accuracy, universality and simplicity, and hope that it can provide new insights into the better integration of prior knowledge, physical intuition and the nature of NNs. The code for this paper is available on https://github.com/CAME-THU/VLT-PINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
月满西楼完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
谨慎绿柏完成签到,获得积分10
3秒前
邓佳鑫Alan应助小灵通采纳,获得10
4秒前
4秒前
4秒前
ALLon完成签到 ,获得积分10
4秒前
lsy完成签到 ,获得积分10
5秒前
5秒前
6秒前
姚怜南发布了新的文献求助10
6秒前
6秒前
毛豆爸爸完成签到,获得积分0
6秒前
爆米花应助奋斗的白昼采纳,获得10
7秒前
8秒前
8秒前
科研通AI5应助CL采纳,获得10
9秒前
研友_VZG7GZ应助不错采纳,获得10
9秒前
9秒前
Kevin发布了新的文献求助10
10秒前
无奈戒指发布了新的文献求助10
10秒前
Lucas应助悦耳的沛文采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
平淡妙松发布了新的文献求助10
11秒前
wenhuanwenxian完成签到 ,获得积分10
11秒前
小鲸鱼发布了新的文献求助10
11秒前
宋宋完成签到,获得积分10
12秒前
尊敬寒松发布了新的文献求助10
13秒前
14秒前
14秒前
123发布了新的文献求助10
16秒前
尹沐完成签到 ,获得积分10
17秒前
糊糊发布了新的文献求助10
17秒前
梦里的三片雪花完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
lzn发布了新的文献求助50
20秒前
缥缈的灵凡完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667773
求助须知:如何正确求助?哪些是违规求助? 3226242
关于积分的说明 9768746
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608301
邀请新用户注册赠送积分活动 759615
科研通“疑难数据库(出版商)”最低求助积分说明 735407