Variable linear transformation improved physics-informed neural networks to solve thin-layer flow problems

规范化(社会学) 人工神经网络 计算机科学 缩放比例 应用数学 变量(数学) 反向 统计物理学 数学 数学优化 人工智能 物理 数学分析 几何学 社会学 人类学
作者
Jiahao Wu,Yuxin Wu,Guihua Zhang,Yang Zhang
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:500: 112761-112761
标识
DOI:10.1016/j.jcp.2024.112761
摘要

Physics-informed neural networks (PINNs) have attracted wide attention due to their ability to seamlessly embed the learning process with physical laws and their considerable success in solving forward and inverse differential equation (DE) problems. While most studies are improving the learning process and network architecture of PINNs, less attention has been paid to the modification of the DE system, which may play an important role in addressing some limitations of PINNs. One of the simplest modifications that can be implemented to all DE systems is the variable linear transformation (VLT). Therefore, in this work, we propose the VLT-PINNs that solve the DE systems of the linear-transformed variables instead of the original ones. To clearly illustrate the importance of prior knowledge in determining the VLT parameters, we choose the thin-layer flow problems as our focus. Ten related cases were tested, including the jet flows, wake flows, mixing layers, boundary layers and Kovasznay flows. Based on the principle of normalization and for a better match of the DE system to the preference of NNs, we identify three principles for determining the VLT parameters: magnitude normalization for dependent variables (principle 1), local normalization for independent variables (principle 2), and appropriate scaling for physics-related parameters in inverse problems (principle 3). The VLT-PINNs with the VLT parameters suggested by the proposed principles show excellent performance over all the test cases, while the results are quite poor with the VLT parameters suggested by traditional linear transformations, such as nondimensionalization and global normalization. Comparison studies also show that only under the constraints of the VLT principles can we obtain satisfactory results. Besides, we find tanh is more appropriate as the activation function than sin for thin-layer flow problems, from both posteriori results and priori analyses with physical intuition. We highlight that our VLT method is an attempt to combine the three advantages of accuracy, universality and simplicity, and hope that it can provide new insights into the better integration of prior knowledge, physical intuition and the nature of NNs. The code for this paper is available on https://github.com/CAME-THU/VLT-PINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在一完成签到,获得积分10
刚刚
LL完成签到 ,获得积分10
1秒前
ZcLee发布了新的文献求助10
3秒前
3秒前
3秒前
和平小鸽发布了新的文献求助10
3秒前
烂漫的易真完成签到,获得积分10
4秒前
jevon应助mariawang采纳,获得10
4秒前
6秒前
王大壮完成签到,获得积分10
6秒前
handsomelin发布了新的文献求助10
7秒前
Andorchid完成签到,获得积分10
8秒前
LKOBES完成签到,获得积分10
8秒前
Sepsp发布了新的文献求助10
8秒前
12秒前
glimmen发布了新的文献求助30
12秒前
BMII完成签到,获得积分10
13秒前
彭于晏应助将将采纳,获得10
15秒前
15秒前
17秒前
18秒前
聪慧松思发布了新的文献求助10
18秒前
流动中的小孩完成签到,获得积分10
18秒前
20秒前
21秒前
pos发布了新的文献求助10
23秒前
整齐乐驹发布了新的文献求助10
24秒前
25秒前
25秒前
文献搬运工应助ardejiang采纳,获得10
27秒前
28秒前
烤红薯发布了新的文献求助10
28秒前
29秒前
大模型应助dlexdn采纳,获得10
29秒前
iY完成签到 ,获得积分10
31秒前
我是老大应助烤红薯采纳,获得10
33秒前
33秒前
33秒前
华半仙完成签到,获得积分10
33秒前
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234275
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216394
捐赠科研通 2548249
什么是DOI,文献DOI怎么找? 1377627
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302