Variable linear transformation improved physics-informed neural networks to solve thin-layer flow problems

规范化(社会学) 人工神经网络 计算机科学 缩放比例 应用数学 变量(数学) 反向 统计物理学 数学 数学优化 人工智能 物理 数学分析 几何学 人类学 社会学
作者
Jiahao Wu,Yuxin Wu,Guihua Zhang,Yang Zhang
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:500: 112761-112761 被引量:19
标识
DOI:10.1016/j.jcp.2024.112761
摘要

Physics-informed neural networks (PINNs) have attracted wide attention due to their ability to seamlessly embed the learning process with physical laws and their considerable success in solving forward and inverse differential equation (DE) problems. While most studies are improving the learning process and network architecture of PINNs, less attention has been paid to the modification of the DE system, which may play an important role in addressing some limitations of PINNs. One of the simplest modifications that can be implemented to all DE systems is the variable linear transformation (VLT). Therefore, in this work, we propose the VLT-PINNs that solve the DE systems of the linear-transformed variables instead of the original ones. To clearly illustrate the importance of prior knowledge in determining the VLT parameters, we choose the thin-layer flow problems as our focus. Ten related cases were tested, including the jet flows, wake flows, mixing layers, boundary layers and Kovasznay flows. Based on the principle of normalization and for a better match of the DE system to the preference of NNs, we identify three principles for determining the VLT parameters: magnitude normalization for dependent variables (principle 1), local normalization for independent variables (principle 2), and appropriate scaling for physics-related parameters in inverse problems (principle 3). The VLT-PINNs with the VLT parameters suggested by the proposed principles show excellent performance over all the test cases, while the results are quite poor with the VLT parameters suggested by traditional linear transformations, such as nondimensionalization and global normalization. Comparison studies also show that only under the constraints of the VLT principles can we obtain satisfactory results. Besides, we find tanh is more appropriate as the activation function than sin for thin-layer flow problems, from both posteriori results and priori analyses with physical intuition. We highlight that our VLT method is an attempt to combine the three advantages of accuracy, universality and simplicity, and hope that it can provide new insights into the better integration of prior knowledge, physical intuition and the nature of NNs. The code for this paper is available on https://github.com/CAME-THU/VLT-PINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助努力哦采纳,获得30
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
adou完成签到 ,获得积分10
4秒前
华仔应助qqqqqq采纳,获得10
4秒前
奶桃七七发布了新的文献求助10
4秒前
荞麦完成签到,获得积分10
5秒前
6秒前
领导范儿应助LL采纳,获得10
6秒前
芳芳子呀发布了新的文献求助10
6秒前
mm完成签到 ,获得积分10
7秒前
9秒前
Jasper应助CXY采纳,获得10
9秒前
冉冉完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
坦率的金针菇完成签到 ,获得积分10
10秒前
ARNAMO发布了新的文献求助10
13秒前
13秒前
14秒前
刘冠廷发布了新的文献求助30
14秒前
科研混子完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
Able阿拉基完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
子木发布了新的文献求助10
18秒前
997完成签到,获得积分10
19秒前
香蕉觅云应助WYN采纳,获得10
19秒前
芳菲依旧发布了新的文献求助150
20秒前
qpp完成签到,获得积分10
20秒前
20秒前
刘冠廷完成签到,获得积分20
21秒前
所所应助温暖幻桃采纳,获得10
21秒前
传奇3应助显隐采纳,获得10
22秒前
23秒前
23秒前
无花果应助李茉琳采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785302
求助须知:如何正确求助?哪些是违规求助? 5687230
关于积分的说明 15467275
捐赠科研通 4914416
什么是DOI,文献DOI怎么找? 2645196
邀请新用户注册赠送积分活动 1593006
关于科研通互助平台的介绍 1547351