A Review of the Synthesis of Biopolymer Hydrogel Electrolytes for Improved Electrode–Electrolyte Interfaces in Zinc-Ion Batteries

材料科学 电解质 纳米技术 溶解 自愈水凝胶 电池(电) 生物高聚物 离子电导率 电化学 化学工程 电极 聚合物 复合材料 高分子化学 化学 工程类 功率(物理) 物理 物理化学 量子力学
作者
Veerle Vandeginste,Junru Wang
出处
期刊:Energies [MDPI AG]
卷期号:17 (2): 310-310 被引量:2
标识
DOI:10.3390/en17020310
摘要

The market for electric vehicles and portable and wearable electronics is expanding rapidly. Lithium-ion batteries currently dominate the market, but concerns persist regarding cost and safety. Consequently, alternative battery chemistries are investigated, with zinc-ion batteries (ZIBs) emerging as promising candidates due to their favorable characteristics, including safety, cost-effectiveness, theoretical volumetric capacity, energy density, and ease of manufacturing. Hydrogel electrolytes stand out as advantageous for ZIBs compared to aqueous electrolytes. This is attributed to their potential application in flexible batteries for wearables and their beneficial impact in suppressing water-induced side reactions, zinc dendrite formation, electrode dissolution, and the risk of water leakage. The novelty of this review lies in highlighting the advancements in the design and synthesis of biopolymer hydrogel electrolytes in ZIBs over the past six years. Notable biopolymers include cellulose, carboxymethyl cellulose, chitosan, alginate, gelatin, agar, and gum. Also, double-network and triple-network hydrogel electrolytes have been developed where biopolymers were combined with synthetic polymers, in particular, polyacrylamide. Research efforts have primarily focused on enhancing the mechanical properties and ionic conductivity of hydrogel electrolytes. Additionally, there is a concerted emphasis on improving the electrochemical performance of semi-solid-state ZIBs. Moreover, some studies have delved into self-healing and adhesive properties, anti-freezing characteristics, and the multifunctionality of hydrogels. This review paper concludes with perspectives on potential future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助诸葛不亮采纳,获得10
刚刚
1秒前
2秒前
细心的念薇完成签到,获得积分10
2秒前
大雨发布了新的文献求助10
2秒前
2秒前
海茵发布了新的文献求助10
3秒前
完美世界应助牛马研究生采纳,获得10
3秒前
yuu发布了新的文献求助10
4秒前
JUZI完成签到,获得积分10
4秒前
CARL完成签到,获得积分10
5秒前
TFBOY发布了新的文献求助20
5秒前
6秒前
刘硕发布了新的文献求助30
6秒前
6秒前
whx完成签到,获得积分10
6秒前
热爱发布了新的文献求助10
7秒前
汉堡包应助寒冷的惊蛰采纳,获得10
7秒前
7秒前
8秒前
清爽如波发布了新的文献求助30
8秒前
9秒前
今后应助corre采纳,获得10
9秒前
10秒前
Wenfeifei发布了新的文献求助10
10秒前
王弈轩发布了新的文献求助10
11秒前
11秒前
科研小狗完成签到 ,获得积分10
11秒前
英俊的铭应助过客采纳,获得10
12秒前
yuu完成签到,获得积分10
13秒前
叶萧辰完成签到,获得积分10
13秒前
昔年发布了新的文献求助10
13秒前
雪山飞龙发布了新的文献求助10
14秒前
王弈轩完成签到,获得积分20
14秒前
15秒前
充电宝应助Miracle采纳,获得10
15秒前
清爽如波完成签到,获得积分20
17秒前
Elena完成签到,获得积分20
20秒前
20秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Sensory analysis — Methodology — Guidelines for the measurement of the performance of a quantitative descriptive sensory panel 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3246076
求助须知:如何正确求助?哪些是违规求助? 2889679
关于积分的说明 8259727
捐赠科研通 2558094
什么是DOI,文献DOI怎么找? 1387004
科研通“疑难数据库(出版商)”最低求助积分说明 650362
邀请新用户注册赠送积分活动 626793