Data-driven analysis of Urban Heat Island phenomenon based on street typology

城市热岛 类型学 背景(考古学) 聚类分析 比例(比率) 分类 环境科学 地理 计算机科学 气象学 地图学 机器学习 人工智能 考古
作者
Mónica Peña Acosta,Faridaddin Vahdatikhaki,João Santos,Sandra Patricia Jarro,Andries G. Dorée
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105170-105170 被引量:15
标识
DOI:10.1016/j.scs.2023.105170
摘要

This study explores the intricate relationship between diverse street types and the urban heat island (UHI) phenomenon - a major urban issue where urban regions are warmer than their rural counterparts due to anthropogenic heat release and absorption by urban structures. UHI leads to increased energy consumption, diminished air quality, and potential health hazards. This research posits that a sample of representative streets (i.e., a few streets from each type of street) will be sufficient to capture and model the UHI in an urban context, accurately reflecting the behavior of other streets. To do so, streets were classified into unique typologies based on (1) socio-economic and morphological attributes and (2) temperature profiles, utilizing two clustering methodologies. The first approach employed K-Prototypes to categorize streets according to their socio-economic and morphological similarities. The second approach utilized Time Series Clustering K-Means, focusing on temperature profiles. The findings indicate that models retain strong performance levels, with R-Squared values of 0,85 and 0,80 and MAE ranging from 0,22 to 0,84°C for CUHI and SUHI respectively, while data collection efforts can be reduced by 50 to 70%. This highlights the value of the street typology in interpreting UHI mechanisms. The study also stresses the need to consider the unique aspects of UHI and the temporal variations in its drivers when formulating mitigation strategies, thereby providing new insights into understanding and alleviating UHI effects at a local scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gelato发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
风清扬发布了新的文献求助10
2秒前
WengXiaoFei完成签到,获得积分10
3秒前
4秒前
4秒前
dhsnh发布了新的文献求助10
5秒前
Luffy发布了新的文献求助10
6秒前
7秒前
YJQ发布了新的文献求助10
7秒前
银色的溪水完成签到 ,获得积分10
7秒前
瓜豆瓜豆瓜完成签到,获得积分10
7秒前
ZQY发布了新的文献求助10
8秒前
zzzz发布了新的文献求助10
11秒前
刘47完成签到 ,获得积分10
11秒前
星辰漫步完成签到,获得积分10
11秒前
轻松豁完成签到,获得积分10
11秒前
SciGPT应助飞白采纳,获得10
11秒前
12秒前
13秒前
顾矜应助小刘鸭鸭采纳,获得10
14秒前
14秒前
cc2004bj应助江河采纳,获得10
15秒前
15秒前
17秒前
17秒前
17秒前
kirito发布了新的文献求助10
18秒前
寻路发布了新的文献求助10
18秒前
18秒前
19秒前
爱悠悠完成签到,获得积分10
20秒前
20秒前
愉快的海发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
Nthorn_rone发布了新的文献求助30
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805491
求助须知:如何正确求助?哪些是违规求助? 5849635
关于积分的说明 15516346
捐赠科研通 4930720
什么是DOI,文献DOI怎么找? 2654728
邀请新用户注册赠送积分活动 1601530
关于科研通互助平台的介绍 1556562