A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability

可解释性 碳价格 波动性(金融) 经济 津贴(工程) 计量经济学 自回归积分移动平均 时间序列 计算机科学 温室气体 人工智能 机器学习 生态学 运营管理 生物
作者
Yaqi Mao,Xiaobing Yu
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:351: 119873-119873 被引量:26
标识
DOI:10.1016/j.jenvman.2023.119873
摘要

A significant milestone in China's carbon market was reached with the official launch and operation of the National Carbon Emission Trading Market. The accurate prediction of the carbon price in this market is crucial for the government to formulate scientific policies regarding the carbon market and for companies to participate effectively. Nevertheless, it remains challenging to accurately predict price fluctuations in the carbon market because of the volatility and instability caused by several complex factors. This paper proposes a new carbon price forecasting framework that considers the potential factors influencing national carbon prices, including data decomposition and reconstruction techniques, feature selection techniques, machine learning forecasting techniques for intelligent optimisation, and research on model interpretability. This comprehensive framework aims to improve the accuracy and understandability of carbon price projections to respond better to the complexity and uncertainty of carbon markets. The results indicate that (1) the hybrid forecasting framework is highly accurate in forecasting national carbon market prices and far superior to other comparative models; (2) the factors driving national carbon prices vary according to the time scale. High-frequency series are sensitive to short-term economic and energy market indicators. Medium- and low-frequency series are more susceptible to financial markets and long-term economic conditions than high-frequency series. This study provides insights into the factors affecting China's national carbon market price and serves as a reference for companies and governments to develop carbon price forecasting tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
@你。发布了新的文献求助10
1秒前
大白发布了新的文献求助10
1秒前
pjm发布了新的文献求助10
2秒前
MMTI完成签到,获得积分10
2秒前
麕麕完成签到 ,获得积分10
2秒前
3秒前
3秒前
yes完成签到,获得积分10
3秒前
三金完成签到,获得积分10
4秒前
4秒前
赖林完成签到,获得积分10
4秒前
blue应助ardejiang采纳,获得20
5秒前
走之儿完成签到,获得积分10
7秒前
大椒完成签到 ,获得积分10
8秒前
8秒前
pjm完成签到,获得积分20
8秒前
9秒前
张书源完成签到 ,获得积分10
9秒前
鎏祈完成签到 ,获得积分10
9秒前
烟花应助大白采纳,获得10
11秒前
Dejavue发布了新的文献求助10
13秒前
catch完成签到,获得积分10
13秒前
Zhai发布了新的文献求助10
14秒前
16秒前
这次会赢吗完成签到,获得积分10
16秒前
kirto完成签到,获得积分10
18秒前
an完成签到,获得积分10
18秒前
踏实十八发布了新的文献求助10
18秒前
刘梓应助眼睛大天思采纳,获得20
18秒前
努力加油煤老八完成签到 ,获得积分0
18秒前
刘佳完成签到 ,获得积分10
20秒前
sinlar发布了新的文献求助10
20秒前
Dejavue完成签到,获得积分10
21秒前
21秒前
SciGPT应助七七采纳,获得10
23秒前
张六六发布了新的文献求助10
23秒前
YXYYXY完成签到,获得积分10
24秒前
JamesPei应助赵一采纳,获得10
25秒前
酷波er应助crybaby采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641