A hybrid forecasting approach for China's national carbon emission allowance prices with balanced accuracy and interpretability

可解释性 碳价格 波动性(金融) 经济 津贴(工程) 计量经济学 自回归积分移动平均 时间序列 计算机科学 温室气体 人工智能 机器学习 生态学 运营管理 生物
作者
Yaqi Mao,Xiaobing Yu
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:351: 119873-119873 被引量:26
标识
DOI:10.1016/j.jenvman.2023.119873
摘要

A significant milestone in China's carbon market was reached with the official launch and operation of the National Carbon Emission Trading Market. The accurate prediction of the carbon price in this market is crucial for the government to formulate scientific policies regarding the carbon market and for companies to participate effectively. Nevertheless, it remains challenging to accurately predict price fluctuations in the carbon market because of the volatility and instability caused by several complex factors. This paper proposes a new carbon price forecasting framework that considers the potential factors influencing national carbon prices, including data decomposition and reconstruction techniques, feature selection techniques, machine learning forecasting techniques for intelligent optimisation, and research on model interpretability. This comprehensive framework aims to improve the accuracy and understandability of carbon price projections to respond better to the complexity and uncertainty of carbon markets. The results indicate that (1) the hybrid forecasting framework is highly accurate in forecasting national carbon market prices and far superior to other comparative models; (2) the factors driving national carbon prices vary according to the time scale. High-frequency series are sensitive to short-term economic and energy market indicators. Medium- and low-frequency series are more susceptible to financial markets and long-term economic conditions than high-frequency series. This study provides insights into the factors affecting China's national carbon market price and serves as a reference for companies and governments to develop carbon price forecasting tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦十七应助默默安荷采纳,获得10
刚刚
早早发布了新的文献求助10
刚刚
平淡的思真完成签到 ,获得积分10
1秒前
Mark_Y完成签到,获得积分10
1秒前
2秒前
于平川春野完成签到 ,获得积分10
2秒前
3秒前
小畅完成签到,获得积分10
3秒前
领导范儿应助hbzyydx46采纳,获得10
3秒前
3秒前
暖冬22完成签到,获得积分10
4秒前
代茜蕾完成签到,获得积分10
4秒前
4秒前
中级中级发布了新的文献求助10
4秒前
情怀应助小小苏荷采纳,获得10
5秒前
5秒前
ww发布了新的文献求助10
6秒前
李嘻嘻完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助早点睡觉丶采纳,获得10
8秒前
火羽白发布了新的文献求助10
8秒前
9秒前
Smar_zcl应助负责新筠采纳,获得20
9秒前
zcx完成签到,获得积分10
10秒前
张资阳完成签到,获得积分20
10秒前
10秒前
Stella应助野渡舟采纳,获得30
11秒前
英俊冷玉发布了新的文献求助10
11秒前
苒洳完成签到 ,获得积分10
11秒前
雨柏完成签到 ,获得积分10
11秒前
夕沫完成签到,获得积分10
12秒前
开朗书双发布了新的文献求助10
12秒前
13秒前
泡泡发布了新的文献求助30
13秒前
小马甲应助liang2508采纳,获得10
14秒前
静候佳音完成签到 ,获得积分10
14秒前
抗体小王完成签到,获得积分10
14秒前
15秒前
16秒前
未曾去过_完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350808
求助须知:如何正确求助?哪些是违规求助? 4484077
关于积分的说明 13958060
捐赠科研通 4383491
什么是DOI,文献DOI怎么找? 2408404
邀请新用户注册赠送积分活动 1401024
关于科研通互助平台的介绍 1374432