明胶
再生(生物学)
化学
生物医学工程
基质(化学分析)
纳米颗粒
材料科学
纳米技术
色谱法
细胞生物学
有机化学
医学
生物
作者
Haodong Wei,Weixin Chen,Shun-Yu Chen,Tao Zhang,Xiufeng Xiao
标识
DOI:10.1080/09205063.2023.2295057
摘要
Scaffolds based on gelatin (Gel) play a crucial role in bone tissue engineering. However, the low mechanical properties, rapid biodegradation rate, insufficient osteogenic activity and lacking anti-infective properties limit their applications in bone regeneration. Herein, the incorporation of ibuprofen (IBU)-loaded zeolitic imidazolate framework-8 (ZIF-8) in a methacrylated gelatin (GelMA) matrix was proposed as a simple and effective strategy to develop the IBU-ZIF-8@GelMA scaffolds for enhanced bone regeneration capacity. Results indicated that the IBU-loaded ZIF-8 nanoparticles with tiny particle sizes were uniformly distributed in the GelMA matrix of the IBU-ZIF-8@GelMA scaffolds, and the IBU-loaded ZIF-8 growing in the scaffolds enabled the controlled and sustained releasing of Zn2+ and IBU in pH = 5.5 over a long period for efficient bone repair and long-term anti-inflammatory activity. Furthermore, the doping of the IBU-loaded ZIF-8 nanoparticles efficiently enhanced the compression performance of the GelMA scaffolds. In vitro studies indicated that the prepared scaffolds presented no cytotoxicity to MC3T3-E1 cells and the released Zn2+ during the degradation of the scaffolds promoted MC3T3-E1 cell osteogenic differentiation. Thus, the drug-loaded ZIF-8 modified 3D printed GelMA scaffolds demonstrated great potential in treating bone defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI