Bi-scale Car-following Model Calibration for Corridor Based on Trajectory

校准 过度拟合 弹道 计算机科学 比例(比率) 宏观尺度 跟踪(心理语言学) 噪音(视频) 燃料效率 模拟 人工智能 汽车工程 工程类 数学 统计 物理 人工神经网络 图像(数学) 哲学 语言学 量子力学 天文
作者
Keke Long,Haotian Shi,Zhiwei Chen,Zhaohui Liang,Xiaopeng Li,Felipe de Souza
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.09393
摘要

The precise estimation of macroscopic traffic parameters, such as travel time and fuel consumption, is essential for the optimization of traffic management systems. Despite its importance, the comprehensive acquisition of vehicle trajectory data for the calculation of these macroscopic measures presents a challenge. To bridge this gap, this study aims to calibrate car-following models capable of predicting both microscopic measures and macroscopic measures. We conduct a numerical analysis to trace the cumulative process of model prediction errors across various measurements, and our findings indicate that macroscopic measures encapsulate the accumulation of model errors. By incorporating macroscopic measures into vehicle model calibration, we can mitigate the impact of noise on microscopic data measurements. We compare three car-following model calibration methods: MiC (using microscopic measurements), MaC (using macroscopic measurements), and BiC (using both microscopic and macroscopic measurements): utilizing real-world trajectory data. The BiC method emerges as the most successful in reconstructing vehicle trajectories and accurately estimating travel time and fuel consumption, whereas the MiC method leads to overfitting and inaccurate macro-measurement predictions. This study underscores the importance of bi-scale calibration for precise traffic and energy consumption predictions, laying the groundwork for future research aimed at enhancing traffic management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助哈哈采纳,获得10
1秒前
Scidog发布了新的文献求助30
2秒前
合适友儿完成签到,获得积分10
3秒前
momo发布了新的文献求助10
3秒前
852应助xiaoxiao采纳,获得10
3秒前
3秒前
4秒前
4秒前
orixero应助longtengfei采纳,获得10
7秒前
上官若男应助tmxx采纳,获得10
8秒前
8秒前
9秒前
9秒前
mof发布了新的文献求助10
9秒前
dfvjdsk发布了新的文献求助10
10秒前
廖ll发布了新的文献求助10
11秒前
ROBO发布了新的文献求助50
11秒前
11秒前
12秒前
13秒前
隐形曼青应助Able采纳,获得10
13秒前
李健应助一颗红葡萄采纳,获得10
13秒前
14秒前
14秒前
大气瑾瑜发布了新的文献求助10
15秒前
SYLH应助momo采纳,获得10
15秒前
英俊的铭应助空空采纳,获得10
15秒前
JamesPei应助按照国际惯例采纳,获得10
15秒前
祁郁郁发布了新的文献求助10
16秒前
科研通AI5应助mof采纳,获得10
17秒前
科研通AI5应助研友_8QyXr8采纳,获得10
18秒前
lin发布了新的文献求助10
18秒前
Aimo完成签到,获得积分10
18秒前
19秒前
Scidog发布了新的文献求助10
19秒前
19秒前
清爽沛槐完成签到,获得积分10
20秒前
21秒前
21秒前
传奇3应助baocq采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169