Uncertainty-aware incomplete multimodal fusion for few-shot Central Retinal Artery Occlusion classification

计算机科学 人工智能 判别式 深度学习 分割 机器学习 视网膜中央动脉阻塞 任务(项目管理) 模态(人机交互) 模式识别(心理学) 医学 眼科 经济 管理 视网膜
作者
Qian Zhou,Ting Chen,Hua Zou,Xuan Xiao
出处
期刊:Information Fusion [Elsevier]
卷期号:104: 102200-102200
标识
DOI:10.1016/j.inffus.2023.102200
摘要

Central Retinal Artery Occlusion (CRAO) is a rare and severe ophthalmic disease that remains challenging to accurately diagnose and classify in clinical practice. The low incidence rate of CRAO makes it difficult to gather a large-scale dataset for training deep-learning models in CRAO classification. Even though the integration of multimodal information has shown the potential to enhance classification performance, the acquisition of complete multimodal data shows significant challenges. This is mainly due to limitations in medical resources and examination costs. Consequently, existing deep learning approaches are unable to learn discriminative features for CRAO classification. In this work, we propose a novel deep-learning methodology that takes advantage of multi-task learning and trustworthy fusion to improve the classification of CRAO with incomplete multimodal data. In the feature extraction stage, we design a multi-task framework that simultaneously performs classification and lesion segmentation tasks. The segmentation task helps the image encoder learn more disease-related features. In particular, text annotations of lesion regions are used to compute the similarity between text features and image features as an auxiliary loss to learn discriminative representations for fine-grained classification. In the multimodal fusion stage, we propose a trustworthy fusion strategy to learn effective joint representations from incomplete multimodal data, in which the model's predictive uncertainty is used to adaptively weigh modality-specific features. We evaluate our method on a self-collected dataset and compare its performance with other state-of-the-art approaches. The results show the superiority of the proposed method with a mean accuracy of 90.31 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kyle完成签到,获得积分10
2秒前
感性的凉面完成签到,获得积分20
2秒前
2秒前
请叫我风吹麦浪应助末岛采纳,获得10
3秒前
Aprial发布了新的文献求助30
3秒前
dd发布了新的文献求助10
3秒前
传奇3应助科研小菜鸟采纳,获得10
3秒前
在水一方应助惠惠采纳,获得10
4秒前
5秒前
冷艳贵公子王少完成签到 ,获得积分10
5秒前
KatzeBaliey完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
zz发布了新的文献求助10
6秒前
6秒前
Twikky发布了新的文献求助10
7秒前
7秒前
小马甲应助芒果采纳,获得10
8秒前
8秒前
心想事成完成签到,获得积分10
10秒前
隐形曼青应助噔噔噔噔采纳,获得10
10秒前
wei发布了新的文献求助10
10秒前
Nature完成签到,获得积分10
10秒前
樱桃苏打水完成签到,获得积分10
11秒前
zhui发布了新的文献求助10
11秒前
金色热浪发布了新的文献求助10
11秒前
pinging应助讲你ing采纳,获得10
13秒前
小九完成签到 ,获得积分10
14秒前
华仔应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
ivy应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
喵酱完成签到,获得积分10
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
敬老院N号应助科研通管家采纳,获得30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794