Uncertainty-aware incomplete multimodal fusion for few-shot Central Retinal Artery Occlusion classification

计算机科学 人工智能 判别式 深度学习 分割 机器学习 视网膜中央动脉阻塞 任务(项目管理) 模态(人机交互) 模式识别(心理学) 医学 眼科 经济 管理 视网膜
作者
Qian Zhou,Ting Chen,Hua Zou,Xuan Xiao
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102200-102200 被引量:6
标识
DOI:10.1016/j.inffus.2023.102200
摘要

Central Retinal Artery Occlusion (CRAO) is a rare and severe ophthalmic disease that remains challenging to accurately diagnose and classify in clinical practice. The low incidence rate of CRAO makes it difficult to gather a large-scale dataset for training deep-learning models in CRAO classification. Even though the integration of multimodal information has shown the potential to enhance classification performance, the acquisition of complete multimodal data shows significant challenges. This is mainly due to limitations in medical resources and examination costs. Consequently, existing deep learning approaches are unable to learn discriminative features for CRAO classification. In this work, we propose a novel deep-learning methodology that takes advantage of multi-task learning and trustworthy fusion to improve the classification of CRAO with incomplete multimodal data. In the feature extraction stage, we design a multi-task framework that simultaneously performs classification and lesion segmentation tasks. The segmentation task helps the image encoder learn more disease-related features. In particular, text annotations of lesion regions are used to compute the similarity between text features and image features as an auxiliary loss to learn discriminative representations for fine-grained classification. In the multimodal fusion stage, we propose a trustworthy fusion strategy to learn effective joint representations from incomplete multimodal data, in which the model's predictive uncertainty is used to adaptively weigh modality-specific features. We evaluate our method on a self-collected dataset and compare its performance with other state-of-the-art approaches. The results show the superiority of the proposed method with a mean accuracy of 90.31 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡宛完成签到 ,获得积分0
刚刚
刚刚
刚刚
刚刚
Sink发布了新的文献求助10
1秒前
lili发布了新的文献求助20
3秒前
香蕉觅云应助小巧谷波采纳,获得10
3秒前
林昀发布了新的文献求助10
3秒前
爆米花应助柳大宝采纳,获得10
4秒前
善学以致用应助科研小白采纳,获得10
4秒前
5秒前
ss发布了新的文献求助10
6秒前
杨家辉发布了新的文献求助10
7秒前
7秒前
peanut发布了新的文献求助100
8秒前
沉静的怜蕾完成签到,获得积分10
8秒前
辛勤泥猴桃完成签到,获得积分10
9秒前
孟韩发布了新的文献求助10
10秒前
乐乐应助111采纳,获得10
10秒前
11秒前
ff完成签到,获得积分10
11秒前
Ava应助吉驴采纳,获得30
12秒前
13秒前
王兆烨完成签到,获得积分10
13秒前
13秒前
ww完成签到,获得积分10
14秒前
15秒前
沉默羔羊发布了新的文献求助10
17秒前
Ava应助ss采纳,获得10
17秒前
ww发布了新的文献求助10
17秒前
羊羊羊完成签到,获得积分10
19秒前
19秒前
20秒前
哆啦B梦发布了新的文献求助10
20秒前
小羊咩咩发布了新的文献求助10
20秒前
Lucas应助了该采纳,获得10
22秒前
22秒前
22秒前
爆米花应助研友_Z6Qggn采纳,获得30
22秒前
郭月发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143