Uncertainty-aware incomplete multimodal fusion for few-shot Central Retinal Artery Occlusion classification

计算机科学 人工智能 判别式 深度学习 分割 机器学习 视网膜中央动脉阻塞 任务(项目管理) 模态(人机交互) 模式识别(心理学) 医学 眼科 经济 管理 视网膜
作者
Qian Zhou,Ting Chen,Hua Zou,Xuan Xiao
出处
期刊:Information Fusion [Elsevier]
卷期号:104: 102200-102200
标识
DOI:10.1016/j.inffus.2023.102200
摘要

Central Retinal Artery Occlusion (CRAO) is a rare and severe ophthalmic disease that remains challenging to accurately diagnose and classify in clinical practice. The low incidence rate of CRAO makes it difficult to gather a large-scale dataset for training deep-learning models in CRAO classification. Even though the integration of multimodal information has shown the potential to enhance classification performance, the acquisition of complete multimodal data shows significant challenges. This is mainly due to limitations in medical resources and examination costs. Consequently, existing deep learning approaches are unable to learn discriminative features for CRAO classification. In this work, we propose a novel deep-learning methodology that takes advantage of multi-task learning and trustworthy fusion to improve the classification of CRAO with incomplete multimodal data. In the feature extraction stage, we design a multi-task framework that simultaneously performs classification and lesion segmentation tasks. The segmentation task helps the image encoder learn more disease-related features. In particular, text annotations of lesion regions are used to compute the similarity between text features and image features as an auxiliary loss to learn discriminative representations for fine-grained classification. In the multimodal fusion stage, we propose a trustworthy fusion strategy to learn effective joint representations from incomplete multimodal data, in which the model's predictive uncertainty is used to adaptively weigh modality-specific features. We evaluate our method on a self-collected dataset and compare its performance with other state-of-the-art approaches. The results show the superiority of the proposed method with a mean accuracy of 90.31 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助ABS采纳,获得10
刚刚
笨笨的完成签到,获得积分10
刚刚
云泥发布了新的文献求助30
刚刚
1秒前
1秒前
2秒前
清风如月完成签到,获得积分10
2秒前
liulongchao完成签到,获得积分10
2秒前
2秒前
干乌发布了新的文献求助10
3秒前
背后白云发布了新的文献求助10
3秒前
爆米花应助DG采纳,获得10
4秒前
4秒前
Archer发布了新的文献求助10
4秒前
李健的小迷弟应助Pk采纳,获得10
6秒前
7秒前
清风如月发布了新的文献求助10
7秒前
7秒前
7秒前
包容的澜完成签到,获得积分10
7秒前
7秒前
atcha完成签到 ,获得积分10
8秒前
8秒前
李健应助狂野的采梦采纳,获得10
8秒前
小会完成签到,获得积分10
9秒前
初夏完成签到 ,获得积分10
10秒前
SciGPT应助科学家采纳,获得10
10秒前
10秒前
10秒前
11秒前
共享精神应助陆千万采纳,获得10
11秒前
洪焕良完成签到,获得积分10
12秒前
好运LL完成签到 ,获得积分20
12秒前
ABS发布了新的文献求助10
13秒前
zzy完成签到,获得积分10
13秒前
14秒前
14秒前
zzx完成签到,获得积分10
14秒前
K1k发布了新的文献求助30
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148856
求助须知:如何正确求助?哪些是违规求助? 2799869
关于积分的说明 7837518
捐赠科研通 2457441
什么是DOI,文献DOI怎么找? 1307837
科研通“疑难数据库(出版商)”最低求助积分说明 628280
版权声明 601685