A novel generative adversarial network‐based super‐resolution approach for face recognition

计算机科学 面子(社会学概念) 人工智能 发电机(电路理论) 相似性(几何) 图像(数学) 面部识别系统 像素 特征(语言学) 计算机视觉 集合(抽象数据类型) 模式识别(心理学) 社会科学 社会学 功率(物理) 语言学 物理 哲学 量子力学 程序设计语言
作者
Amit Chougule,Shreyas Kolte,Vinay Chamola,Amir Hussain
出处
期刊:Expert Systems [Wiley]
卷期号:41 (8)
标识
DOI:10.1111/exsy.13564
摘要

Abstract Face recognition is an essential feature required for a range of computer vision applications such as security, attendance systems, emotion detection, airport check‐in, and many others. The super‐resolution of subject images is an important and challenging element in numerous scenarios. At times the images are low resolution and need to be processed through super‐resolution techniques to gain more accurate results. For the problem of image super‐resolution, deep learning‐based face recognition systems have been explored in recent years; however, low‐resolution face recognition remains an arduous task. Generative adversarial network (GAN) based models are a promising approach to address this challenge. However, conventional GAN‐based models may generate images that differ significantly from an original high‐resolution image in the test set to the point that the identity of the target face may be changed. To address this shortcoming, we propose a novel U‐Net style generator architecture, where skip‐connections between the encoder and decoder layer can help in preserving the facial characteristics of the input image in the generated image, thus curbing the generator's ability to generate an entirely new image and training it to generate an image more similar in characteristics to the original image. In addition to statistical metrics like structural similarity index measure and Fréchet inception distance, we compute the pixel‐wise distance between the original and model‐generated images to ascertain that our model generates as close to the original images as possible. While we train the model for 4× super‐resolution (64 × 64 images to 256 × 256), our architecture can also be trained for an arbitrary resizing scale. Finally, the number of faces detected over high‐resolution images generated by our model is shown to be higher than state‐of‐the‐art high‐resolution image creation models for face recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一发布了新的文献求助10
2秒前
3秒前
5High_0完成签到 ,获得积分10
4秒前
Hh发布了新的文献求助30
4秒前
站住浩子发布了新的文献求助10
5秒前
6秒前
陈谨诺关注了科研通微信公众号
7秒前
8秒前
Sove完成签到,获得积分20
9秒前
zz完成签到,获得积分10
9秒前
9秒前
9秒前
怕孤单的安容完成签到 ,获得积分10
11秒前
鳗鱼鞋垫发布了新的文献求助10
12秒前
13秒前
13秒前
开心小刺猬完成签到 ,获得积分10
14秒前
15秒前
genomed应助MADAO采纳,获得20
16秒前
cqsuper完成签到,获得积分10
16秒前
16秒前
无聊的从霜完成签到 ,获得积分10
16秒前
17秒前
大气傲易完成签到 ,获得积分10
17秒前
丰D发布了新的文献求助10
18秒前
18秒前
自然方盒完成签到,获得积分10
19秒前
只A不B发布了新的文献求助300
19秒前
没钱搞什么学术完成签到 ,获得积分10
19秒前
那奇泡芙发布了新的文献求助10
20秒前
21秒前
cocolu应助PangSir采纳,获得30
21秒前
阿斯顿风格完成签到,获得积分10
21秒前
大呲花发布了新的文献求助10
21秒前
danmoyjj应助tcmlida采纳,获得30
22秒前
22秒前
xitao完成签到,获得积分10
23秒前
自然方盒发布了新的文献求助10
23秒前
1321发布了新的文献求助30
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441528
求助须知:如何正确求助?哪些是违规求助? 3038152
关于积分的说明 8970749
捐赠科研通 2726439
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688232