已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comprehensive systematic review of information fusion methods in smart cities and urban environments

计算机科学 智慧城市 数据科学 斯科普斯 云计算 信息融合 大数据 人工智能 物联网 万维网 数据挖掘 梅德林 政治学 法学 操作系统
作者
Mohammed A. Fadhel,Ali M. Duhaim,Ahmed Saihood,Ahmed Sewify,Mokhaled N. A. Al-Hamadani,A. S. Albahri,Laith Alzubaidi,Ashish Gupta,Sayedali Mirjalili,Yuantong Gu
出处
期刊:Information Fusion [Elsevier]
卷期号:107: 102317-102317 被引量:44
标识
DOI:10.1016/j.inffus.2024.102317
摘要

Smart cities result from integrating advanced technologies and intelligent sensors into modern urban infrastructure. The Internet of Things (IoT) and data integration are pivotal in creating interconnected and intelligent urban spaces. In this literature review, we explore the different methods of information fusion used in smart cities, along with their advantages and challenges. However, there are notable challenges in managing diverse data sources, handling large data volumes, and meeting the near-real-time demands of various smart city applications. The review aims to examine smart city applications in detail, incorporating quality evaluation and information fusion techniques and identifying critical issues while outlining promising research directions. In order to accomplish our goal, we conducted a comprehensive search of literature and applied selective criteria. We identified 59 recent studies addressing machine learning (ML) and deep learning (DL) techniques in smart city applications. These studies were obtained from various databases such as ScienceDirect (SD), Scopus, Web of Science (WoS), and IEEE Xplore. The main objective of this study is to provide more detailed insights into smart cities by supplementing existing research. The word cloud visualisation of machine learning/deep learning and information fusion in smart cities papers shows a diverse landscape, covering both technical aspects of artificial intelligence and practical applications in urban settings. Apart from technical exploration, the study also delves into the ethical and privacy implications arising in smart cities. Moreover, it thoroughly examines the challenges that must be addressed to realise this urban revolution's potential fully.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阳光照发布了新的文献求助10
1秒前
油炸皮卡丘完成签到 ,获得积分10
2秒前
2秒前
3秒前
研友_VZG7GZ应助橙子快跑采纳,获得10
3秒前
小葵发布了新的文献求助10
4秒前
Jasper应助鸿儒采纳,获得10
5秒前
6秒前
zjspidany应助qiuxuan100采纳,获得10
8秒前
12秒前
文献互助完成签到,获得积分10
14秒前
李健应助无与伦比采纳,获得10
19秒前
边边完成签到,获得积分20
19秒前
666发布了新的文献求助10
19秒前
zjspidany应助qiuxuan100采纳,获得10
20秒前
20秒前
20秒前
rich完成签到,获得积分10
22秒前
23秒前
可爱的函函应助边边采纳,获得30
24秒前
哈密发布了新的文献求助10
24秒前
思源应助乐叻采纳,获得10
24秒前
25秒前
鲁晓涵发布了新的文献求助10
27秒前
artemis发布了新的文献求助10
27秒前
28秒前
oilmelech发布了新的文献求助10
31秒前
无与伦比发布了新的文献求助10
31秒前
32秒前
34秒前
37秒前
mqy完成签到,获得积分10
38秒前
普萘洛尔完成签到 ,获得积分20
38秒前
39秒前
zangzang完成签到 ,获得积分10
39秒前
mqy发布了新的文献求助10
41秒前
wanci应助无与伦比采纳,获得10
42秒前
两个轮发布了新的文献求助10
43秒前
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314174
求助须知:如何正确求助?哪些是违规求助? 2946566
关于积分的说明 8530622
捐赠科研通 2622238
什么是DOI,文献DOI怎么找? 1434426
科研通“疑难数据库(出版商)”最低求助积分说明 665295
邀请新用户注册赠送积分活动 650838