Fine-grained Urban Flow Inference with Unobservable Data via Space-Time Attraction Learning

计算机科学 推论 流量(数学) 不可见的 增采样 数据挖掘 人工智能 数学 计量经济学 图像(数学) 几何学
作者
Ruifeng Wang,Yuansheng Liu,Yongshun Gong,Wei Liu,Meng Chen,Yilong Yin,Yu Zheng
标识
DOI:10.1109/icdm58522.2023.00176
摘要

Fine-grained urban flow inference focuses on inferring fine-grained urban flows based solely on coarse-grained observations, which is essential for the city management and transportation services. However, most of the existing methods assume that partial urban flows in coarse-grained regions cannot be observable. In this study, we propose a multi-task framework known as UrbanSTA with space-time attraction learning to estimate missing values in coarse-grained urban flow map and forecast fine-grained urban flows simultaneously. Specifically, UrbanSTA comprises two parts: the flow completion network STA and the fine-grained flow inference network FIN. STA captures space-time features with a separable space-time attention encoder and recovers the missing flow features with a decoder. FIN directly uses complete coarse-grained flow features for further decoding, and reconstructs fine-grained flow features based on the complex associations between coarse- and fine-grained urban flows, relying on upsampling constraints. Extensive experiments conducted on two real-world datasets demonstrate that our proposed model yields the best results compared to other state-of-the-art methods. The source code has been provided at https://github.com/Wangzheaos/UrbanSTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助2mo采纳,获得10
1秒前
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
orixero应助猫猫逃离二次元采纳,获得10
2秒前
anasy应助科研通管家采纳,获得10
2秒前
小伙子完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
十三应助科研通管家采纳,获得20
3秒前
anasy应助科研通管家采纳,获得10
3秒前
刘婉敏应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
30应助科研通管家采纳,获得50
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
wxyshare应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
wanci应助居居子采纳,获得10
4秒前
anasy应助科研通管家采纳,获得10
4秒前
4秒前
AUK发布了新的文献求助10
4秒前
Ava应助yy采纳,获得10
6秒前
6秒前
大钱发布了新的文献求助10
6秒前
豪哥发布了新的文献求助10
6秒前
顾矜应助酒颜采纳,获得10
6秒前
Kang完成签到,获得积分20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183871
求助须知:如何正确求助?哪些是违规求助? 4370008
关于积分的说明 13608357
捐赠科研通 4221858
什么是DOI,文献DOI怎么找? 2315513
邀请新用户注册赠送积分活动 1314083
关于科研通互助平台的介绍 1263010