计算机科学
推论
流量(数学)
不可见的
增采样
数据挖掘
人工智能
数学
计量经济学
图像(数学)
几何学
作者
Ruifeng Wang,Yuansheng Liu,Yongshun Gong,Wei Liu,Meng Chen,Yilong Yin,Yu Zheng
标识
DOI:10.1109/icdm58522.2023.00176
摘要
Fine-grained urban flow inference focuses on inferring fine-grained urban flows based solely on coarse-grained observations, which is essential for the city management and transportation services. However, most of the existing methods assume that partial urban flows in coarse-grained regions cannot be observable. In this study, we propose a multi-task framework known as UrbanSTA with space-time attraction learning to estimate missing values in coarse-grained urban flow map and forecast fine-grained urban flows simultaneously. Specifically, UrbanSTA comprises two parts: the flow completion network STA and the fine-grained flow inference network FIN. STA captures space-time features with a separable space-time attention encoder and recovers the missing flow features with a decoder. FIN directly uses complete coarse-grained flow features for further decoding, and reconstructs fine-grained flow features based on the complex associations between coarse- and fine-grained urban flows, relying on upsampling constraints. Extensive experiments conducted on two real-world datasets demonstrate that our proposed model yields the best results compared to other state-of-the-art methods. The source code has been provided at https://github.com/Wangzheaos/UrbanSTA.
科研通智能强力驱动
Strongly Powered by AbleSci AI