Fine-grained Urban Flow Inference with Unobservable Data via Space-Time Attraction Learning

计算机科学 推论 流量(数学) 不可见的 增采样 数据挖掘 人工智能 数学 计量经济学 图像(数学) 几何学
作者
Ruifeng Wang,Yuansheng Liu,Yongshun Gong,Wei Liu,Meng Chen,Yilong Yin,Yu Zheng
标识
DOI:10.1109/icdm58522.2023.00176
摘要

Fine-grained urban flow inference focuses on inferring fine-grained urban flows based solely on coarse-grained observations, which is essential for the city management and transportation services. However, most of the existing methods assume that partial urban flows in coarse-grained regions cannot be observable. In this study, we propose a multi-task framework known as UrbanSTA with space-time attraction learning to estimate missing values in coarse-grained urban flow map and forecast fine-grained urban flows simultaneously. Specifically, UrbanSTA comprises two parts: the flow completion network STA and the fine-grained flow inference network FIN. STA captures space-time features with a separable space-time attention encoder and recovers the missing flow features with a decoder. FIN directly uses complete coarse-grained flow features for further decoding, and reconstructs fine-grained flow features based on the complex associations between coarse- and fine-grained urban flows, relying on upsampling constraints. Extensive experiments conducted on two real-world datasets demonstrate that our proposed model yields the best results compared to other state-of-the-art methods. The source code has been provided at https://github.com/Wangzheaos/UrbanSTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王舍予应助卷卷采纳,获得10
刚刚
刚刚
沉默烨霖发布了新的文献求助10
1秒前
畅快远山完成签到,获得积分20
2秒前
2秒前
1111完成签到,获得积分10
2秒前
奋斗的寄翠完成签到,获得积分20
3秒前
小禾一定行完成签到 ,获得积分10
4秒前
4秒前
JIEYU发布了新的文献求助10
5秒前
nenoaowu发布了新的文献求助10
6秒前
6秒前
英姑应助钰小憨采纳,获得10
6秒前
m13965062353完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Rui_Rui应助沉默烨霖采纳,获得10
9秒前
11秒前
开心妙之发布了新的文献求助10
11秒前
12秒前
13秒前
wanci应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
changping应助科研通管家采纳,获得150
13秒前
浮游应助科研通管家采纳,获得30
13秒前
菘蓝应助科研通管家采纳,获得10
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
磊磊完成签到,获得积分10
13秒前
13秒前
tuanheqi应助科研通管家采纳,获得150
13秒前
一条咸鱼发布了新的文献求助10
13秒前
酷波er应助科研通管家采纳,获得10
14秒前
xcgh应助科研通管家采纳,获得20
14秒前
大模型应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299054
求助须知:如何正确求助?哪些是违规求助? 4447386
关于积分的说明 13842552
捐赠科研通 4332967
什么是DOI,文献DOI怎么找? 2378412
邀请新用户注册赠送积分活动 1373741
关于科研通互助平台的介绍 1339300