Automatic curtain wall frame detection based on deep learning and cross-modal feature fusion

帧(网络) 情态动词 幕墙 人工智能 融合 特征(语言学) 计算机科学 深度学习 工程类 计算机视觉 结构工程 材料科学 电信 语言学 哲学 高分子化学
作者
Decheng Wu,Yu Li,Rui Li,Longqi Cheng,Jingyuan Zhao,Mingfu Zhao,Chul Hee Lee
出处
期刊:Automation in Construction [Elsevier]
卷期号:160: 105305-105305
标识
DOI:10.1016/j.autcon.2024.105305
摘要

The curtain wall construction industry is one of the most popular industries with excellent development prospects. On the other hand, curtain wall installation is mainly performed manually, which has the disadvantages of great danger and low efficiency. Therefore, this study designed a method for curtain wall frame detection based on computer vision to assist curtain wall installation in completing positioning and installation tasks. This paper presents a deep learning method with two input streams and cross-modal feature fusion based on the encoder-decoder structure (CWFD-net) to detect curtain wall frames accurately. In particular, the high-level semantic features of the RGB and Depth streams in the encoder stage are fused to generate RGB-D features to achieve preliminary cross-modal feature fusion, which makes input information include more curtain wall frame features. The coordinate attention mechanism enables the network to focus more on the position information of the curtain wall frame. A cross-stage feature fusion strategy was adopted in the decoder stage to enhance the features further and suppress interference factors. A dataset containing curtain wall frame images of different styles in various curtain wall construction scenarios was established to verify the effectiveness of this method, which is trained, validated, and tested with this dataset. The experimental results show that the detection performance of the proposed method is superior to the commonly used segmentation or detection methods, which achieves the highest mIoU 87.33%, Accuracy 96.98%, Recall 92.28%, F1-Score 87.66%, and the lowest 95-HD 6.13. This model is expected to be deployed and applied to curtain wall installation robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Bonnie采纳,获得10
刚刚
1秒前
1秒前
桥下完成签到,获得积分10
1秒前
1秒前
感谢jsyfanature转发科研通微信,获得积分50
2秒前
杨杨发布了新的文献求助10
2秒前
2秒前
3秒前
玖梦发布了新的文献求助10
3秒前
李爱国应助Sygganggang采纳,获得10
4秒前
许嘉伟发布了新的文献求助10
4秒前
bodhi完成签到,获得积分10
4秒前
47xixixi完成签到 ,获得积分10
5秒前
Rachel发布了新的文献求助50
6秒前
6秒前
7秒前
感谢闫什2转发科研通微信,获得积分50
7秒前
大模型应助tjfwg采纳,获得10
7秒前
小林发布了新的文献求助10
7秒前
8秒前
大壮应助小黑是个甜仔采纳,获得10
8秒前
潇洒小甜瓜完成签到,获得积分10
8秒前
闪闪的以山完成签到 ,获得积分10
9秒前
qing_he应助胡桃夹馍采纳,获得10
10秒前
酷波er应助玖梦采纳,获得10
11秒前
12秒前
abc123发布了新的文献求助10
12秒前
感谢nil转发科研通微信,获得积分50
13秒前
13秒前
14秒前
47xixixi关注了科研通微信公众号
15秒前
Sygganggang发布了新的文献求助10
16秒前
默默的斑马完成签到,获得积分10
18秒前
小林完成签到,获得积分10
18秒前
林夕发布了新的文献求助10
19秒前
风萧萧完成签到,获得积分10
19秒前
科研通AI2S应助dxh采纳,获得10
19秒前
20秒前
感谢悠然转发科研通微信,获得积分50
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138933
求助须知:如何正确求助?哪些是违规求助? 2789871
关于积分的说明 7793019
捐赠科研通 2446289
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096