Knowledge Embedded Autoencoder Network for Harmonic Drive Fault Diagnosis Under Few-Shot Industrial Scenarios

自编码 计算机科学 断层(地质) 一次性 弹丸 人工智能 故障检测与隔离 人工神经网络 工程类 机械工程 化学 有机化学 地震学 执行机构 地质学
作者
Jiaxian Chen,Kairu Wen,Jingyan Xia,Ruyi Huang,Zhuyun Chen,Weihua Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/jiot.2024.3362343
摘要

The development of Internet of Things technology provides abundant data resources for prognostics health management of industrial machinery, and data-driven methods have shown their powerful ability in the field of fault diagnosis. However, these methods have several limitations: 1) Using less labeled data to obtain higher accuracy is a challenging task, which limits the application of diagnostic models in practical applications. 2) Physics-informed knowledge is largely ignored during the modeling process, which contains a wealth of information that can reflect the harmonic drive's health status. To address these challenges, a self-supervised fault diagnosis framework is developed by integrating prior knowledge with deep learning to improve the accuracy and reliability of diagnosis models in industrial applications. Specifically, the physics-based knowledge including 32-dimensional time domain, frequency domain, and time-frequency domain features, is first designed to provide fault information and significantly reduce the amount of data required for deep learning. Furthermore, a self-supervised knowledge embedded auto-encoder network is built by employing the prior knowledge in the multi-scale convolutional auto-encoder. With the ability to integrate prior knowledge and the self-supervised learning mechanism, the proposed method can provide a strong tool for knowledge representation and an effective solution for fault diagnosis under a few-shot industrial scenario. The experimental results conducted on a real harmonic drive fault dataset prove that the proposed network framework provides effective insights on fault diagnosis and has excellent generalizability in practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茜茜哥哥完成签到,获得积分20
2秒前
迟大猫应助美满的鲂采纳,获得50
2秒前
爱学习的岁岁完成签到 ,获得积分10
5秒前
bkagyin应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得50
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
研友_西门孤晴完成签到,获得积分10
10秒前
13秒前
研友_n0kjPL完成签到,获得积分0
15秒前
小马完成签到,获得积分10
16秒前
烂漫的蜡烛完成签到 ,获得积分10
18秒前
于于于发布了新的文献求助10
19秒前
shutup完成签到,获得积分10
20秒前
直击灵魂完成签到,获得积分10
21秒前
wxs完成签到,获得积分10
22秒前
孤独丹秋发布了新的文献求助20
22秒前
牛奶面包完成签到 ,获得积分10
22秒前
王哈哈完成签到,获得积分10
24秒前
机灵石头完成签到,获得积分10
24秒前
Joker完成签到,获得积分10
26秒前
丰富的大地完成签到,获得积分10
32秒前
zxvcbnm完成签到,获得积分10
32秒前
32秒前
哈哈哈哈完成签到 ,获得积分10
33秒前
科研通AI5应助王哈哈采纳,获得10
33秒前
小红书求接接接接一篇完成签到,获得积分10
34秒前
小鑫完成签到,获得积分10
35秒前
欣喜山晴完成签到,获得积分10
35秒前
今后应助小柒采纳,获得10
37秒前
20240901发布了新的文献求助10
37秒前
危机的芸完成签到 ,获得积分10
39秒前
racill完成签到 ,获得积分10
41秒前
和谐的映梦完成签到,获得积分10
41秒前
43秒前
黄瓜橙橙完成签到,获得积分0
43秒前
科研通AI5应助引子采纳,获得10
43秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709234
求助须知:如何正确求助?哪些是违规求助? 3257371
关于积分的说明 9904441
捐赠科研通 2970244
什么是DOI,文献DOI怎么找? 1629116
邀请新用户注册赠送积分活动 772446
科研通“疑难数据库(出版商)”最低求助积分说明 743806