Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures

帧(网络) 力矩(物理) 非线性系统 结构工程 钢架 物理 工程类 机械工程 经典力学 量子力学
作者
R. Bailey Bond,Pu Ren,Jerome F. Hajjar,Hao Sun
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2402.17992
摘要

There is a growing interest in utilizing machine learning (ML) methods for structural metamodeling due to the substantial computational cost of traditional numerical simulations. The existing data-driven strategies show potential limitations to the model robustness and interpretability as well as the dependency of rich data. To address these challenges, this paper presents a novel physics-informed machine learning (PiML) method, which incorporates scientific principles and physical laws into deep neural networks for modeling seismic responses of nonlinear structures. The basic concept is to constrain the solution space of the ML model within known physical bounds. This is made possible with three main features, namely, model order reduction, a long short-term memory (LSTM) networks, and Newton's second law (e.g., the equation of motion). Model order reduction is essential for handling structural systems with inherent redundancy and enhancing model efficiency. The LSTM network captures temporal dependencies, enabling accurate prediction of time series responses. The equation of motion is manipulated to learn system nonlinearities and confines the solution space within physically interpretable results. These features enable model training with relatively sparse data and offer benefits in terms of accuracy, interpretability, and robustness. Furthermore, a dataset of seismically designed archetype ductile planar steel moment resistant frames under horizontal seismic loading, available in the DesignSafe-CI Database, is considered for evaluation of the proposed method. The resulting metamodel is capable of handling more complex data compared to existing physics-guided LSTM models and outperforms other non-physics data-driven neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
炙热的若枫完成签到,获得积分10
刚刚
1秒前
搞怪彩虹完成签到,获得积分20
1秒前
英俊的铭应助17采纳,获得10
1秒前
1秒前
1秒前
勤劳的绮露完成签到,获得积分20
1秒前
xiaxia发布了新的文献求助10
2秒前
聪明冰蝶应助策略采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
白沙叶完成签到,获得积分10
4秒前
元66666发布了新的文献求助100
4秒前
科研通AI5应助伶俐的向彤采纳,获得10
5秒前
李爱国应助张半首采纳,获得10
6秒前
在水一方应助胡萝卜采纳,获得10
6秒前
666发布了新的文献求助10
6秒前
爱X7的嘛喽完成签到,获得积分10
7秒前
坚定送终发布了新的文献求助10
8秒前
xcxc发布了新的文献求助10
8秒前
爆米花应助海德堡采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助hqq采纳,获得10
9秒前
妩媚的如花完成签到,获得积分10
9秒前
科研通AI5应助jimmyhui采纳,获得30
9秒前
科研通AI5应助Chen采纳,获得10
9秒前
10秒前
温暖的钻石完成签到,获得积分10
11秒前
12秒前
科研通AI5应助冷傲曼荷采纳,获得10
12秒前
shunshun122完成签到,获得积分20
12秒前
科研通AI5应助稚杰duck采纳,获得30
12秒前
leliangcao发布了新的文献求助10
12秒前
13秒前
xcxc完成签到,获得积分10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755983
求助须知:如何正确求助?哪些是违规求助? 3299253
关于积分的说明 10109367
捐赠科研通 3013816
什么是DOI,文献DOI怎么找? 1655273
邀请新用户注册赠送积分活动 789692
科研通“疑难数据库(出版商)”最低求助积分说明 753361