Accurate Detection Method of Corrosion State of Steel Structure Bridge in Internet of Things Environment Based on Visual Image Characteristics

桥(图论) 腐蚀 结构工程 材料科学 物联网 图像(数学) 互联网 国家(计算机科学) 冶金 计算机科学 法律工程学 工程类 复合材料 人工智能 万维网 算法 医学 内科学
作者
Jingyang Gao
出处
期刊:Journal of Testing and Evaluation [ASTM International]
卷期号:52 (3): 20230083-20230083
标识
DOI:10.1520/jte20230083
摘要

Bridge structures are one of the most important aspects of transportation because they make remote areas accessible, but preserving the environment is equally important. The toughness and endurance of the bridge structure is very important from the security perspective of transportation. Corrosion adversely impacts the steel structure strength of bridges. Accurate detection methods within the environment of Internet of Things can help to find the corrosion of bridges in time, take maintenance measures in advance, and delay the decay of bridge life. At present, the inspection of bridge supports is primarily carried out by labor-intensive inspection. This method is time-consuming and labor-intensive and also affects traffic. To show advancement in the detection accuracy of the bridge corrosion state, an accurate detection method based on visual image features is proposed. Drone technology is used to collect corrosion images of steel bridges. Considering the complexity of the image, the convolution operation is performed on the images using a deep neural network (DNN). A DNN model is constructed according to the apparent features of the rust image. The supervised learning DNN is combined with the unsupervised learning sparse autoencoding (SAE), and the DNN is autoencoded by SAE to reduce the reconstruction bias. On this basis, the accurate detection of the rusted state is accomplished. From the experimental analysis, it is apparent that the peak signal-to-noise ratio of this method is higher than 25, and the detection time is shorter than that of the methods compared. It can accurately detect different types of rust states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的难胜完成签到,获得积分20
刚刚
9℃发布了新的文献求助10
刚刚
星辰大海应助马户的崛起采纳,获得10
刚刚
leaves发布了新的文献求助10
刚刚
2秒前
2秒前
刘春亚发布了新的文献求助10
3秒前
不会取名字完成签到,获得积分10
3秒前
4秒前
7lanxiong发布了新的文献求助10
5秒前
热心的网民C完成签到,获得积分10
6秒前
眼里有星辰完成签到,获得积分10
6秒前
万能图书馆应助彩色宛筠采纳,获得10
6秒前
6秒前
星辰大海应助星星采纳,获得10
8秒前
米粒完成签到,获得积分10
9秒前
深情的mewmew完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
Emmmm完成签到,获得积分20
11秒前
13秒前
wanci应助岸在海的深处采纳,获得10
13秒前
13秒前
12334发布了新的文献求助10
13秒前
852应助欣慰的茉莉采纳,获得10
13秒前
热心的迎曼完成签到 ,获得积分10
15秒前
7lanxiong完成签到,获得积分10
16秒前
16秒前
17秒前
w1完成签到,获得积分10
17秒前
17秒前
111发布了新的文献求助10
17秒前
17秒前
Hao完成签到,获得积分10
18秒前
可罗雀完成签到,获得积分10
18秒前
小鹿发布了新的文献求助10
18秒前
ppjkq1发布了新的文献求助10
18秒前
18秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051673
求助须知:如何正确求助?哪些是违规求助? 2708949
关于积分的说明 7415188
捐赠科研通 2353340
什么是DOI,文献DOI怎么找? 1245507
科研通“疑难数据库(出版商)”最低求助积分说明 605743
版权声明 595855