Accurate Detection Method of Corrosion State of Steel Structure Bridge in Internet of Things Environment Based on Visual Image Characteristics

桥(图论) 腐蚀 结构工程 材料科学 物联网 图像(数学) 互联网 国家(计算机科学) 冶金 计算机科学 法律工程学 工程类 复合材料 人工智能 万维网 算法 医学 内科学
作者
Jingyang Gao
出处
期刊:Journal of Testing and Evaluation [ASM International]
卷期号:52 (3): 20230083-20230083
标识
DOI:10.1520/jte20230083
摘要

Bridge structures are one of the most important aspects of transportation because they make remote areas accessible, but preserving the environment is equally important. The toughness and endurance of the bridge structure is very important from the security perspective of transportation. Corrosion adversely impacts the steel structure strength of bridges. Accurate detection methods within the environment of Internet of Things can help to find the corrosion of bridges in time, take maintenance measures in advance, and delay the decay of bridge life. At present, the inspection of bridge supports is primarily carried out by labor-intensive inspection. This method is time-consuming and labor-intensive and also affects traffic. To show advancement in the detection accuracy of the bridge corrosion state, an accurate detection method based on visual image features is proposed. Drone technology is used to collect corrosion images of steel bridges. Considering the complexity of the image, the convolution operation is performed on the images using a deep neural network (DNN). A DNN model is constructed according to the apparent features of the rust image. The supervised learning DNN is combined with the unsupervised learning sparse autoencoding (SAE), and the DNN is autoencoded by SAE to reduce the reconstruction bias. On this basis, the accurate detection of the rusted state is accomplished. From the experimental analysis, it is apparent that the peak signal-to-noise ratio of this method is higher than 25, and the detection time is shorter than that of the methods compared. It can accurately detect different types of rust states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
melody完成签到,获得积分10
2秒前
CipherSage应助研友_ngKyqn采纳,获得10
2秒前
鲤角兽完成签到,获得积分10
2秒前
研友_n0kYwL发布了新的文献求助10
3秒前
cc发布了新的文献求助10
4秒前
起床做核酸完成签到,获得积分10
5秒前
Handsome发布了新的文献求助10
5秒前
niu完成签到,获得积分20
11秒前
香蕉觅云应助halogen采纳,获得10
11秒前
11秒前
11秒前
Kikua发布了新的文献求助10
11秒前
陶征应助Handsome采纳,获得10
11秒前
916应助海藻糖采纳,获得10
12秒前
SYLH应助海藻糖采纳,获得30
12秒前
12秒前
再也不拖发布了新的文献求助10
16秒前
orixero应助泡泡糖采纳,获得10
16秒前
两句话完成签到 ,获得积分10
16秒前
17秒前
Jeffery426发布了新的文献求助10
17秒前
大个应助cc采纳,获得10
18秒前
18秒前
玛卡巴卡完成签到 ,获得积分10
19秒前
19秒前
传奇3应助高高采纳,获得10
20秒前
某博完成签到 ,获得积分10
21秒前
zoe发布了新的文献求助10
22秒前
weist完成签到,获得积分10
22秒前
ZZ发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
halogen完成签到,获得积分10
25秒前
请和我吃饭完成签到,获得积分10
27秒前
anyilin完成签到,获得积分10
27秒前
脑洞疼应助傻子采纳,获得10
27秒前
halogen发布了新的文献求助10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167