Spatiotemporal wavelet-domain neuroimaging of chaotic EEG seizure signals in epilepsy diagnosis and prognosis with the use of graph convolutional LSTM networks

癫痫 脑电图 神经影像学 计算机科学 图形 人工智能 小波 模式识别(心理学) 心理学 神经科学 理论计算机科学
作者
Njud S. Alharbi,Stelios Bekiros,Hadi Jahanshahi,Jun Mou,Qijia Yao
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:181: 114675-114675 被引量:1
标识
DOI:10.1016/j.chaos.2024.114675
摘要

In the crucial arena of neurological care, pre-seizure, and seizure diagnosis stand as imperative focal points. While existing literature has probed this area, it demands sustained exploration given the intricate nature of seizures and the profound implications of prompt diagnosis on patient prognosis. Greater insights and novel advancements in the field of epilepsy diagnosis and prognosis can significantly bolster patient health and potentially redefine treatment management. Deep learning models like long short-term memory networks (LSTM) show promise for sequential data analysis. However, their application to electroencephalogram (EEG) signals for seizure detection reveals challenges, especially in imbalanced datasets. In response, we develop a hybrid graph neural network, integrating Convolutional Neural Networks (CNN) and LSTM through optimized skip connections. These connections, combined with our optimized graph structure, ensure no loss of crucial temporal data. The CNN layer efficiently extracts spatial features from samples, while LSTM emphasizes the EEG signal's temporal nuances. A unique facet of our proposed architecture is its optimized structure which is obtained based on Bayesian optimization. It does not merely refine network parameters but also systematically determines the optimal neuron count, layering, and overall architecture of our graph neural network. Alongside our deep learning methodology, we conduct a dynamical analysis elucidating the intrinsic chaotic patterns of seizure neural EEG signals. We demonstrate that the phase space analysis provides valuable insight for wavelet time-scale pre-processing for pre-seizure and seizure diagnosis. The numerical and empirical results validate the performance of our novel and breakthrough approach. Also, the results are compared with outcomes obtained using LSTM in different conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦磊发布了新的文献求助10
刚刚
hyl发布了新的文献求助10
刚刚
Billy发布了新的文献求助10
刚刚
tourist585发布了新的文献求助10
1秒前
1秒前
打打应助lalala采纳,获得10
2秒前
2秒前
yml完成签到 ,获得积分10
2秒前
3秒前
如月完成签到 ,获得积分10
3秒前
喜多米430发布了新的文献求助30
3秒前
充电宝应助ysy采纳,获得10
4秒前
无花果应助Lumia采纳,获得10
4秒前
4秒前
baobao关注了科研通微信公众号
5秒前
犹豫若云完成签到,获得积分20
6秒前
kk完成签到,获得积分10
7秒前
咯吱发布了新的文献求助10
7秒前
7秒前
慕青应助2917采纳,获得10
8秒前
8秒前
marco发布了新的文献求助10
8秒前
局内人发布了新的文献求助10
8秒前
lan发布了新的文献求助10
8秒前
田様应助QDD采纳,获得10
9秒前
丘比特应助太麻烦了啦采纳,获得10
10秒前
10秒前
英俊的铭应助WYP采纳,获得10
11秒前
11秒前
11秒前
shunshun发布了新的文献求助10
12秒前
兴奋的定帮应助Ccccsa采纳,获得10
12秒前
13秒前
酷波er应助局内人采纳,获得10
13秒前
CodeCraft应助123采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
热心的棒棒糖完成签到 ,获得积分10
14秒前
hanmeige发布了新的文献求助10
14秒前
lijing123完成签到,获得积分10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198