Facial Expression Recognition Using YOLO

面部表情识别 计算机科学 面部识别系统 面部表情 人工智能 模式识别(心理学) 计算机视觉
作者
K C Tejaswi,D Mokshith,Sai Pradeep E,Ch Mahesh Kumar,Manoj Kumar K
标识
DOI:10.1109/rmkmate59243.2023.10369028
摘要

This study presents a facial expression recognition system that utilizes the You Only Look Once (YOLO) object detection framework. The system leverages the capabilities of YOLO to detect and classify facial expressions accurately and efficiently.The main objective is to achieve efficient and real-time detection and classification of facial expressions. By utilizing the YOLO framework's object detection capabilities, the system can accurately locate and extract facial regions of interest for subsequent analysis. To train the system, a large dataset of labeled facial images representing various expressions, such as happiness, sadness, anger, fear, surprise, and neutral, is utilized. Deep learning techniques, including convolutional neural networks (CNNs), are employed to optimize the modified YOLO network's parameters, enhancing expression recognition accuracy.Experimental evaluation on benchmark facial expression datasets demonstrates the effectiveness and efficiency of the proposed YOLO-based facial expression recognition system. It surpasses existing approaches in terms of both accuracy and real-time performance, making it highly suitable for practical applications. The proposed facial expression recognition system based on the YOLO object detection framework demonstrates the capability to detect and classify facial expressions in real-time. This advancement opens up new possibilities in fields such as emotion detection, human-computer interaction, and affective computing. The approach not only improves accuracy but also addresses the crucial requirement for real-time processing, which is essential for various real-world applications. By leveraging the advantages of the YOLO framework, the system achieves a good balance between accuracy and speed, enabling efficient and effective facial expression analysis. With its promising results, the YOLO-based facial expression recognition system holds great potential for advancing fields that rely on accurate and real-time emotion analysis..

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不不不爱学习完成签到,获得积分10
1秒前
wang发布了新的文献求助20
2秒前
冷傲的咖啡豆完成签到 ,获得积分10
2秒前
善学以致用应助Lynna Lai采纳,获得10
3秒前
花花完成签到,获得积分10
3秒前
猫雷发布了新的文献求助10
4秒前
zp发布了新的文献求助10
4秒前
zhao发布了新的文献求助10
4秒前
5秒前
54132123发布了新的文献求助10
5秒前
自然含羞草完成签到,获得积分10
5秒前
科研通AI2S应助小火花采纳,获得10
5秒前
6秒前
兔兔sci发布了新的文献求助10
7秒前
不配.应助霸气的代云采纳,获得20
8秒前
zumii完成签到,获得积分20
9秒前
骑着火车撵火箭完成签到,获得积分10
9秒前
虚幻笑旋发布了新的文献求助10
10秒前
10秒前
SciGPT应助乐天采纳,获得10
11秒前
风评发布了新的文献求助10
13秒前
科研通AI2S应助甜蜜向梦采纳,获得10
15秒前
逝者如斯只是看着完成签到,获得积分10
15秒前
16秒前
Guuuuy发布了新的文献求助10
16秒前
彭于晏应助wang采纳,获得10
17秒前
英俊的铭应助虚幻笑旋采纳,获得10
18秒前
科研通AI2S应助风评采纳,获得10
22秒前
斯文败类应助liangshuhong采纳,获得10
22秒前
乐天发布了新的文献求助10
22秒前
小稻草人完成签到,获得积分10
22秒前
刘影超完成签到 ,获得积分20
23秒前
节课本完成签到,获得积分10
23秒前
高大楼房完成签到,获得积分10
23秒前
不做花瓶好多年完成签到,获得积分10
30秒前
calm发布了新的文献求助10
30秒前
syl应助研友_xnEOX8采纳,获得50
31秒前
31秒前
31秒前
Owen应助Oo采纳,获得10
31秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170213
求助须知:如何正确求助?哪些是违规求助? 2821426
关于积分的说明 7934126
捐赠科研通 2481670
什么是DOI,文献DOI怎么找? 1322010
科研通“疑难数据库(出版商)”最低求助积分说明 633451
版权声明 602595