Facial Expression Recognition Using YOLO

面部表情识别 计算机科学 面部识别系统 面部表情 人工智能 模式识别(心理学) 计算机视觉
作者
K C Tejaswi,D Mokshith,Sai Pradeep E,Ch Mahesh Kumar,Manoj Kumar K
标识
DOI:10.1109/rmkmate59243.2023.10369028
摘要

This study presents a facial expression recognition system that utilizes the You Only Look Once (YOLO) object detection framework. The system leverages the capabilities of YOLO to detect and classify facial expressions accurately and efficiently.The main objective is to achieve efficient and real-time detection and classification of facial expressions. By utilizing the YOLO framework's object detection capabilities, the system can accurately locate and extract facial regions of interest for subsequent analysis. To train the system, a large dataset of labeled facial images representing various expressions, such as happiness, sadness, anger, fear, surprise, and neutral, is utilized. Deep learning techniques, including convolutional neural networks (CNNs), are employed to optimize the modified YOLO network's parameters, enhancing expression recognition accuracy.Experimental evaluation on benchmark facial expression datasets demonstrates the effectiveness and efficiency of the proposed YOLO-based facial expression recognition system. It surpasses existing approaches in terms of both accuracy and real-time performance, making it highly suitable for practical applications. The proposed facial expression recognition system based on the YOLO object detection framework demonstrates the capability to detect and classify facial expressions in real-time. This advancement opens up new possibilities in fields such as emotion detection, human-computer interaction, and affective computing. The approach not only improves accuracy but also addresses the crucial requirement for real-time processing, which is essential for various real-world applications. By leveraging the advantages of the YOLO framework, the system achieves a good balance between accuracy and speed, enabling efficient and effective facial expression analysis. With its promising results, the YOLO-based facial expression recognition system holds great potential for advancing fields that rely on accurate and real-time emotion analysis..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昀宇发布了新的文献求助10
2秒前
3秒前
百香果bxg完成签到 ,获得积分10
6秒前
疯狂的绮山完成签到,获得积分10
9秒前
威武皮带完成签到,获得积分10
10秒前
ED应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得30
10秒前
10秒前
你怎么睡得着觉完成签到,获得积分10
10秒前
12秒前
16秒前
Ava应助zzz采纳,获得10
18秒前
18秒前
SciGPT应助听风者采纳,获得10
19秒前
知犯何逆完成签到 ,获得积分10
19秒前
21秒前
海荣完成签到,获得积分10
22秒前
23秒前
JOBZ完成签到,获得积分10
23秒前
23秒前
木子木子粒完成签到 ,获得积分10
24秒前
春江完成签到,获得积分10
27秒前
Gstar完成签到,获得积分10
27秒前
27秒前
30秒前
31秒前
32秒前
完美世界应助小气鬼采纳,获得30
34秒前
34秒前
共享精神应助lkz采纳,获得10
35秒前
35秒前
36秒前
大个应助苏苏苏采纳,获得10
37秒前
38秒前
phil完成签到,获得积分10
39秒前
听风者发布了新的文献求助10
39秒前
kiwi完成签到 ,获得积分10
40秒前
跳跃的洋葱完成签到 ,获得积分10
40秒前
忧郁凌波发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343