Rapid characterization of physical properties for the pharmaceutical pellet cores based on NIR spectroscopy and ensemble learning

偏最小二乘回归 颗粒 弹丸 集成学习 交叉验证 物理性质 人工神经网络 生物系统 数学 机器学习 人工智能 材料科学 统计 计算机科学 复合材料 生物
作者
Sijun Wu,Chaoliang Jia,Wang Li,Ye Cheng,Zheng Li,Wenlong Li
出处
期刊:European Journal of Pharmaceutics and Biopharmaceutics [Elsevier]
卷期号:197: 114214-114214 被引量:2
标识
DOI:10.1016/j.ejpb.2024.114214
摘要

During the development of sustained-release pellets, the physical characteristics of the pellet cores can affect drug release in the preparation. The method based on near-infrared (NIR) spectroscopy and ensemble learning was proposed to swiftly assess the physical properties of the pellet cores. In the research, the potential of three algorithms, direct standardization (DS), partial least squares regression (PLSR) and generalized regression neural network (GRNN), was investigated and compared. The performance of the DS, PLSR and GRNN models were improved after applying bootstrap aggregating (Bagging) ensemble learning. And the Bagging-GRNN model showed the best predictive capacity. Except for inter-particle porosity, the mean absolute deviations of other 11 physical parameters were less than 1.0. Furthermore, the cosine coefficient values between the actual and predicted physical fingerprints was higher than 0.98 for 15 out of the 16 validation samples when using the Bagging-GRNN model. To reduce the model complexity, the 60 variables significantly correlated with angle of repose, particle size (D50) and roundness were utilized to develop the simplified Bagging-GRNN model. And the simplified model showed satisfactory predictive capacity. In summary, the developed ensemble modelling strategy based NIR spectra is a promising approach to rapidly characterize the physical properties of the pellet cores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花不能太放肆完成签到,获得积分20
刚刚
183完成签到,获得积分10
1秒前
1秒前
123lura发布了新的文献求助10
1秒前
宫立辉完成签到,获得积分10
1秒前
curtainai完成签到,获得积分10
2秒前
91完成签到,获得积分10
2秒前
无情的冰香完成签到 ,获得积分10
2秒前
xh完成签到,获得积分20
2秒前
迟大猫应助周舟采纳,获得10
2秒前
2秒前
3秒前
3秒前
SLS完成签到,获得积分10
4秒前
4秒前
4秒前
swsx1317发布了新的文献求助10
5秒前
6秒前
kilig应助hohokuz采纳,获得10
6秒前
LKSkywalker完成签到,获得积分10
6秒前
6秒前
田様应助大晨采纳,获得10
6秒前
BWZ发布了新的文献求助10
6秒前
8秒前
西子阳发布了新的文献求助10
8秒前
8秒前
下课了吧发布了新的文献求助10
8秒前
8秒前
朴实山兰完成签到,获得积分10
8秒前
8秒前
9秒前
啊嚯发布了新的文献求助10
9秒前
草上飞完成签到 ,获得积分10
9秒前
小罗飞飞飞完成签到 ,获得积分10
9秒前
9秒前
L龙完成签到,获得积分20
10秒前
雯雯完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762