Rapid characterization of physical properties for the pharmaceutical pellet cores based on NIR spectroscopy and ensemble learning

偏最小二乘回归 颗粒 弹丸 集成学习 交叉验证 物理性质 人工神经网络 生物系统 数学 机器学习 人工智能 材料科学 统计 计算机科学 复合材料 生物
作者
Sijun Wu,Chaoliang Jia,Wang Li,Ye Cheng,Zheng Li,Wenlong Li
出处
期刊:European Journal of Pharmaceutics and Biopharmaceutics [Elsevier]
卷期号:197: 114214-114214 被引量:5
标识
DOI:10.1016/j.ejpb.2024.114214
摘要

During the development of sustained-release pellets, the physical characteristics of the pellet cores can affect drug release in the preparation. The method based on near-infrared (NIR) spectroscopy and ensemble learning was proposed to swiftly assess the physical properties of the pellet cores. In the research, the potential of three algorithms, direct standardization (DS), partial least squares regression (PLSR) and generalized regression neural network (GRNN), was investigated and compared. The performance of the DS, PLSR and GRNN models were improved after applying bootstrap aggregating (Bagging) ensemble learning. And the Bagging-GRNN model showed the best predictive capacity. Except for inter-particle porosity, the mean absolute deviations of other 11 physical parameters were less than 1.0. Furthermore, the cosine coefficient values between the actual and predicted physical fingerprints was higher than 0.98 for 15 out of the 16 validation samples when using the Bagging-GRNN model. To reduce the model complexity, the 60 variables significantly correlated with angle of repose, particle size (D50) and roundness were utilized to develop the simplified Bagging-GRNN model. And the simplified model showed satisfactory predictive capacity. In summary, the developed ensemble modelling strategy based NIR spectra is a promising approach to rapidly characterize the physical properties of the pellet cores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林云夕发布了新的文献求助10
1秒前
九九发布了新的文献求助10
1秒前
刘凤莲关注了科研通微信公众号
1秒前
weven完成签到,获得积分10
2秒前
宿雨完成签到,获得积分10
2秒前
2秒前
3秒前
泯珉发布了新的文献求助10
3秒前
Hello应助哈哈镜阿姐采纳,获得10
3秒前
满意语芙发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
塔木完成签到,获得积分10
5秒前
宿雨发布了新的文献求助10
5秒前
5秒前
幸运的元元完成签到,获得积分10
5秒前
zoe发布了新的文献求助10
6秒前
JJFly发布了新的文献求助10
6秒前
6秒前
wanci应助Orange采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
ChenLan完成签到,获得积分20
8秒前
香菜丸子发布了新的文献求助10
8秒前
shi完成签到,获得积分20
8秒前
myc641完成签到 ,获得积分10
8秒前
8秒前
zhscu完成签到,获得积分10
8秒前
weven发布了新的文献求助10
8秒前
8秒前
9秒前
LiuQianyi完成签到 ,获得积分10
9秒前
香瓜完成签到,获得积分10
9秒前
TK发布了新的文献求助10
9秒前
9秒前
9秒前
小鱼马完成签到,获得积分10
10秒前
11mao11完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851