Data-driven identification and pressure fields prediction for parallel twin cylinders based on POD and DMD method

物理 鉴定(生物学) 交货地点 计算流体力学 机械 统计物理学 植物 农学 生物
作者
Guangyun Min,Naibin Jiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:30
标识
DOI:10.1063/5.0185882
摘要

The mode analysis of parallel twin cylinders is conducted in this paper using two data-driven methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). First, a high-fidelity computational fluid dynamics (CFD) model of parallel twin cylinders is established, and numerical simulations of the model are carried out. Subsequently, the fundamental principles of the POD and DMD algorithms are systematically introduced. Utilizing snapshots obtained from the high-fidelity CFD model, the POD and DMD methods are employed to extract the dominant flow structures. Furthermore, a comparison between the two data-driven methods is conducted by analyzing modal frequencies, pressure distribution, and the reconstruction errors of pressure fields. Finally, the pressure fields of non-sample points are predicted based on the POD–backpropagation neural network (BPNN) surrogate model and the DMD method, and the predicted results are compared with the CFD simulation results. It found that (i) the DMD method is capable of extracting the main coherent structures of the pressure fields, directly obtaining flow modes and their corresponding frequencies, and assessing the stability of flow modes; (ii) the DMD method can capture the main flow features of the pressure fields in both spatial and temporal dimensions, while the POD method is primarily efficient at capturing the spatial features of the pressure fields; (iii) in contrast to the frequency-ranked DMD method, the energy-ranked POD method can reconstruct the pressure fields using a smaller number of modes, indicating that the POD method has an advantage in terms of mode reduction; (iv) in contrast to the energy-ranked POD method, the frequency-ranked DMD method has a wider applicability to the range of flow types and has more advantages in stability analysis of complex dynamic systems; (v) the predicted pressure fields around the cylinder using the first five-order POD modes or DMD modes closely align with CFD calculation results. Additionally, the evolution of pressure fields predicted by the POD–BPNN surrogate model with the first five-order POD modes or the DMD method with the first 200-order DMD modes significantly agrees with CFD simulation results; (vi) the combined use of the POD–BPNN surrogate model and DMD methods allows efficient interpolation and extrapolation of samples, delivering exceptional predictive performance. This study offers insight into the coherent structures in parallel twin cylinders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不爱吃泡面完成签到,获得积分10
1秒前
111发布了新的文献求助20
1秒前
小葫芦完成签到 ,获得积分10
2秒前
年轻的飞风完成签到,获得积分10
2秒前
李健应助一期一会采纳,获得10
2秒前
李健应助wise111采纳,获得10
2秒前
粥粥完成签到 ,获得积分10
4秒前
4秒前
爆米花应助daqisong采纳,获得10
4秒前
元2333发布了新的文献求助20
4秒前
4秒前
爆米花应助小椰采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
烟花应助vv采纳,获得10
5秒前
6秒前
6秒前
小蘑菇应助Gnor采纳,获得10
6秒前
星辰大海应助机灵的南蕾采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
qqxin完成签到,获得积分20
6秒前
6秒前
池寒1完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
xy完成签到 ,获得积分10
8秒前
AL发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
qqxin发布了新的文献求助10
9秒前
Ava应助why911采纳,获得10
10秒前
lhxing发布了新的文献求助20
10秒前
sule发布了新的文献求助10
11秒前
所所应助wenwen采纳,获得10
11秒前
万能图书馆应助王博雅采纳,获得10
11秒前
11秒前
李健应助lll采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932