Data-driven identification and pressure fields prediction for parallel twin cylinders based on POD and DMD method

物理 鉴定(生物学) 交货地点 计算流体力学 机械 统计物理学 植物 农学 生物
作者
Guangyun Min,Naibin Jiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:30
标识
DOI:10.1063/5.0185882
摘要

The mode analysis of parallel twin cylinders is conducted in this paper using two data-driven methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). First, a high-fidelity computational fluid dynamics (CFD) model of parallel twin cylinders is established, and numerical simulations of the model are carried out. Subsequently, the fundamental principles of the POD and DMD algorithms are systematically introduced. Utilizing snapshots obtained from the high-fidelity CFD model, the POD and DMD methods are employed to extract the dominant flow structures. Furthermore, a comparison between the two data-driven methods is conducted by analyzing modal frequencies, pressure distribution, and the reconstruction errors of pressure fields. Finally, the pressure fields of non-sample points are predicted based on the POD–backpropagation neural network (BPNN) surrogate model and the DMD method, and the predicted results are compared with the CFD simulation results. It found that (i) the DMD method is capable of extracting the main coherent structures of the pressure fields, directly obtaining flow modes and their corresponding frequencies, and assessing the stability of flow modes; (ii) the DMD method can capture the main flow features of the pressure fields in both spatial and temporal dimensions, while the POD method is primarily efficient at capturing the spatial features of the pressure fields; (iii) in contrast to the frequency-ranked DMD method, the energy-ranked POD method can reconstruct the pressure fields using a smaller number of modes, indicating that the POD method has an advantage in terms of mode reduction; (iv) in contrast to the energy-ranked POD method, the frequency-ranked DMD method has a wider applicability to the range of flow types and has more advantages in stability analysis of complex dynamic systems; (v) the predicted pressure fields around the cylinder using the first five-order POD modes or DMD modes closely align with CFD calculation results. Additionally, the evolution of pressure fields predicted by the POD–BPNN surrogate model with the first five-order POD modes or the DMD method with the first 200-order DMD modes significantly agrees with CFD simulation results; (vi) the combined use of the POD–BPNN surrogate model and DMD methods allows efficient interpolation and extrapolation of samples, delivering exceptional predictive performance. This study offers insight into the coherent structures in parallel twin cylinders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lucygaga完成签到 ,获得积分10
1秒前
鹿友菌完成签到,获得积分10
1秒前
chiron发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
田様应助123采纳,获得10
2秒前
在水一方应助jory采纳,获得10
2秒前
2秒前
2秒前
uhuh203发布了新的文献求助10
2秒前
lj发布了新的文献求助10
2秒前
坚定的小馒头完成签到 ,获得积分10
3秒前
zouzou发布了新的文献求助10
3秒前
trumning完成签到,获得积分10
3秒前
共享精神应助方方方方方采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
小脚丫发布了新的文献求助10
4秒前
AAA导弹批发李哥完成签到,获得积分10
4秒前
我是老大应助风中的傲安采纳,获得10
4秒前
hooke发布了新的文献求助10
5秒前
KIC发布了新的文献求助10
6秒前
6秒前
6秒前
含蓄若云完成签到,获得积分10
6秒前
6秒前
研友_VZG7GZ应助林二车娜姆采纳,获得30
6秒前
隐形飞雪完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
DDEEE完成签到,获得积分10
8秒前
8秒前
Huanglj完成签到,获得积分10
8秒前
小小发布了新的文献求助30
8秒前
8秒前
小鱼马发布了新的文献求助10
8秒前
朱小燕发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894