Data-driven identification and pressure fields prediction for parallel twin cylinders based on POD and DMD method

物理 鉴定(生物学) 交货地点 计算流体力学 机械 统计物理学 植物 农学 生物
作者
Guangyun Min,Naibin Jiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:30
标识
DOI:10.1063/5.0185882
摘要

The mode analysis of parallel twin cylinders is conducted in this paper using two data-driven methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). First, a high-fidelity computational fluid dynamics (CFD) model of parallel twin cylinders is established, and numerical simulations of the model are carried out. Subsequently, the fundamental principles of the POD and DMD algorithms are systematically introduced. Utilizing snapshots obtained from the high-fidelity CFD model, the POD and DMD methods are employed to extract the dominant flow structures. Furthermore, a comparison between the two data-driven methods is conducted by analyzing modal frequencies, pressure distribution, and the reconstruction errors of pressure fields. Finally, the pressure fields of non-sample points are predicted based on the POD–backpropagation neural network (BPNN) surrogate model and the DMD method, and the predicted results are compared with the CFD simulation results. It found that (i) the DMD method is capable of extracting the main coherent structures of the pressure fields, directly obtaining flow modes and their corresponding frequencies, and assessing the stability of flow modes; (ii) the DMD method can capture the main flow features of the pressure fields in both spatial and temporal dimensions, while the POD method is primarily efficient at capturing the spatial features of the pressure fields; (iii) in contrast to the frequency-ranked DMD method, the energy-ranked POD method can reconstruct the pressure fields using a smaller number of modes, indicating that the POD method has an advantage in terms of mode reduction; (iv) in contrast to the energy-ranked POD method, the frequency-ranked DMD method has a wider applicability to the range of flow types and has more advantages in stability analysis of complex dynamic systems; (v) the predicted pressure fields around the cylinder using the first five-order POD modes or DMD modes closely align with CFD calculation results. Additionally, the evolution of pressure fields predicted by the POD–BPNN surrogate model with the first five-order POD modes or the DMD method with the first 200-order DMD modes significantly agrees with CFD simulation results; (vi) the combined use of the POD–BPNN surrogate model and DMD methods allows efficient interpolation and extrapolation of samples, delivering exceptional predictive performance. This study offers insight into the coherent structures in parallel twin cylinders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boluohu完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
天天开心完成签到 ,获得积分10
7秒前
Sunbrust发布了新的文献求助30
12秒前
张大星完成签到 ,获得积分10
13秒前
15秒前
15秒前
SHF完成签到 ,获得积分10
16秒前
17秒前
liamddd完成签到 ,获得积分10
18秒前
小何发布了新的文献求助10
22秒前
西瓜二郎发布了新的文献求助10
22秒前
哈哈哈66发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
33秒前
淡然葶完成签到 ,获得积分10
35秒前
38秒前
Singhi完成签到 ,获得积分10
38秒前
葛优发布了新的文献求助10
40秒前
41秒前
归尘发布了新的文献求助10
41秒前
42秒前
深情安青应助阔达苡采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
46秒前
共享精神应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
斯文败类应助科研通管家采纳,获得10
46秒前
大模型应助科研通管家采纳,获得10
46秒前
传奇3应助科研通管家采纳,获得10
46秒前
个性的荆应助科研通管家采纳,获得10
46秒前
wy.he应助科研通管家采纳,获得10
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
SciGPT应助科研通管家采纳,获得10
47秒前
tuanheqi应助科研通管家采纳,获得150
47秒前
个性的荆应助科研通管家采纳,获得10
47秒前
iNk应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
natmed应助科研通管家采纳,获得10
47秒前
个性的荆应助科研通管家采纳,获得10
47秒前
彭于晏应助科研通管家采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652866
求助须知:如何正确求助?哪些是违规求助? 4788617
关于积分的说明 15061919
捐赠科研通 4811370
什么是DOI,文献DOI怎么找? 2573877
邀请新用户注册赠送积分活动 1529653
关于科研通互助平台的介绍 1488381