Data-driven identification and pressure fields prediction for parallel twin cylinders based on POD and DMD method

物理 鉴定(生物学) 交货地点 计算流体力学 机械 统计物理学 植物 农学 生物
作者
Guangyun Min,Naibin Jiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:30
标识
DOI:10.1063/5.0185882
摘要

The mode analysis of parallel twin cylinders is conducted in this paper using two data-driven methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). First, a high-fidelity computational fluid dynamics (CFD) model of parallel twin cylinders is established, and numerical simulations of the model are carried out. Subsequently, the fundamental principles of the POD and DMD algorithms are systematically introduced. Utilizing snapshots obtained from the high-fidelity CFD model, the POD and DMD methods are employed to extract the dominant flow structures. Furthermore, a comparison between the two data-driven methods is conducted by analyzing modal frequencies, pressure distribution, and the reconstruction errors of pressure fields. Finally, the pressure fields of non-sample points are predicted based on the POD–backpropagation neural network (BPNN) surrogate model and the DMD method, and the predicted results are compared with the CFD simulation results. It found that (i) the DMD method is capable of extracting the main coherent structures of the pressure fields, directly obtaining flow modes and their corresponding frequencies, and assessing the stability of flow modes; (ii) the DMD method can capture the main flow features of the pressure fields in both spatial and temporal dimensions, while the POD method is primarily efficient at capturing the spatial features of the pressure fields; (iii) in contrast to the frequency-ranked DMD method, the energy-ranked POD method can reconstruct the pressure fields using a smaller number of modes, indicating that the POD method has an advantage in terms of mode reduction; (iv) in contrast to the energy-ranked POD method, the frequency-ranked DMD method has a wider applicability to the range of flow types and has more advantages in stability analysis of complex dynamic systems; (v) the predicted pressure fields around the cylinder using the first five-order POD modes or DMD modes closely align with CFD calculation results. Additionally, the evolution of pressure fields predicted by the POD–BPNN surrogate model with the first five-order POD modes or the DMD method with the first 200-order DMD modes significantly agrees with CFD simulation results; (vi) the combined use of the POD–BPNN surrogate model and DMD methods allows efficient interpolation and extrapolation of samples, delivering exceptional predictive performance. This study offers insight into the coherent structures in parallel twin cylinders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光怀亦完成签到,获得积分10
1秒前
东方元语应助传统的斓采纳,获得20
2秒前
4秒前
Criminology34应助刘五州采纳,获得10
4秒前
咕咕呱发布了新的文献求助10
5秒前
5秒前
zfh完成签到,获得积分10
6秒前
Mike完成签到,获得积分10
7秒前
薛定谔的猫完成签到,获得积分10
9秒前
胡蝶发布了新的文献求助10
10秒前
如风发布了新的文献求助10
11秒前
余日秋山完成签到 ,获得积分20
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
李健应助HJJHJH采纳,获得10
14秒前
打打应助xueshu采纳,获得10
14秒前
14秒前
Ausir完成签到,获得积分20
14秒前
迅速的丑完成签到,获得积分10
15秒前
坚定向彤完成签到,获得积分10
15秒前
16秒前
安安完成签到,获得积分10
16秒前
优雅的怀莲完成签到,获得积分10
16秒前
YWJ完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
自渡发布了新的文献求助20
16秒前
17秒前
ninnn完成签到,获得积分10
17秒前
18秒前
55完成签到,获得积分10
18秒前
Ausir发布了新的文献求助10
18秒前
18秒前
天真鸭子完成签到,获得积分10
18秒前
hyd完成签到,获得积分10
18秒前
科研通AI2S应助YWJ采纳,获得10
19秒前
lemperory发布了新的文献求助20
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972