Data-driven identification and pressure fields prediction for parallel twin cylinders based on POD and DMD method

物理 鉴定(生物学) 交货地点 计算流体力学 机械 统计物理学 植物 农学 生物
作者
Guangyun Min,Naibin Jiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:12
标识
DOI:10.1063/5.0185882
摘要

The mode analysis of parallel twin cylinders is conducted in this paper using two data-driven methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). First, a high-fidelity computational fluid dynamics (CFD) model of parallel twin cylinders is established, and numerical simulations of the model are carried out. Subsequently, the fundamental principles of the POD and DMD algorithms are systematically introduced. Utilizing snapshots obtained from the high-fidelity CFD model, the POD and DMD methods are employed to extract the dominant flow structures. Furthermore, a comparison between the two data-driven methods is conducted by analyzing modal frequencies, pressure distribution, and the reconstruction errors of pressure fields. Finally, the pressure fields of non-sample points are predicted based on the POD–backpropagation neural network (BPNN) surrogate model and the DMD method, and the predicted results are compared with the CFD simulation results. It found that (i) the DMD method is capable of extracting the main coherent structures of the pressure fields, directly obtaining flow modes and their corresponding frequencies, and assessing the stability of flow modes; (ii) the DMD method can capture the main flow features of the pressure fields in both spatial and temporal dimensions, while the POD method is primarily efficient at capturing the spatial features of the pressure fields; (iii) in contrast to the frequency-ranked DMD method, the energy-ranked POD method can reconstruct the pressure fields using a smaller number of modes, indicating that the POD method has an advantage in terms of mode reduction; (iv) in contrast to the energy-ranked POD method, the frequency-ranked DMD method has a wider applicability to the range of flow types and has more advantages in stability analysis of complex dynamic systems; (v) the predicted pressure fields around the cylinder using the first five-order POD modes or DMD modes closely align with CFD calculation results. Additionally, the evolution of pressure fields predicted by the POD–BPNN surrogate model with the first five-order POD modes or the DMD method with the first 200-order DMD modes significantly agrees with CFD simulation results; (vi) the combined use of the POD–BPNN surrogate model and DMD methods allows efficient interpolation and extrapolation of samples, delivering exceptional predictive performance. This study offers insight into the coherent structures in parallel twin cylinders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lynn完成签到 ,获得积分10
刚刚
1秒前
liu发布了新的文献求助10
1秒前
1秒前
2秒前
研友_VZG7GZ应助pangboo采纳,获得10
2秒前
研友_VZG7GZ应助可达鸭采纳,获得10
3秒前
4秒前
4秒前
5秒前
明理文龙完成签到,获得积分20
5秒前
鲸鱼发布了新的文献求助10
6秒前
蜀黍完成签到,获得积分10
6秒前
灵犀完成签到 ,获得积分10
6秒前
6秒前
lulu发布了新的文献求助10
7秒前
7秒前
Orange应助科研不懂12采纳,获得10
8秒前
帅气凝云发布了新的文献求助10
8秒前
光亮之桃发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
研友_nEW4G8发布了新的文献求助10
10秒前
11秒前
wsl_csu发布了新的文献求助30
12秒前
orixero应助帅气凝云采纳,获得10
13秒前
13秒前
xuxingjie发布了新的文献求助10
14秒前
dique3hao完成签到 ,获得积分10
17秒前
whocare发布了新的文献求助10
18秒前
jiaqiLi发布了新的文献求助10
18秒前
19秒前
在水一方应助lianhe采纳,获得10
20秒前
fh完成签到 ,获得积分10
21秒前
科研通AI5应助DH采纳,获得10
21秒前
22秒前
哈哈哈哈发布了新的文献求助10
22秒前
23秒前
lyt发布了新的文献求助10
25秒前
1947188918完成签到,获得积分10
25秒前
乐乐应助song采纳,获得10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981