Cognitive Inertia: Cyclical Interactions Between Attention and Memory Shape Learning

任务(项目管理) 认知心理学 心理学 认知 相关性(法律) 光学(聚焦) 编码 认知科学 计算模型 计算机科学 人工智能 神经科学 生物化学 化学 物理 管理 光学 政治学 法学 经济 基因
作者
Brandon M. Turner,Vladimir M. Sloutsky
出处
期刊:Current Directions in Psychological Science [SAGE]
卷期号:33 (2): 79-86
标识
DOI:10.1177/09637214231217989
摘要

In explaining how humans selectively attend, common frameworks often focus on how attention is allocated relative to an idealized allocation based on properties of the task. However, these perspectives often ignore different types of constraints that could help explain why attention was allocated in a particular way. For example, many computational models of learning are well equipped to explain how attention should ideally be allocated to minimize errors within the task, but these models often assume all features are perfectly encoded or that the only learning goal is to maximize accuracy. In this article, we argue for a more comprehensive view by using computational modeling to understand the complex interactions that occur between selective attention and memory. Our central thesis is that although selective attention directs attention to relevant dimensions, relevance can be established only through memories of previous experiences. Hence, attention is initially used to encode features and create memories, but thereafter, attention operates selectively on the basis of what is kept in memory. Through this lens, deviations from ideal performance can still be viewed as goal-directed selective attention, but the orientation of attention is subject to the constraints of the individual learner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shark完成签到,获得积分10
刚刚
rushfuture发布了新的文献求助10
1秒前
船夫发布了新的文献求助10
1秒前
科研通AI6.1应助Tergel采纳,获得10
3秒前
4秒前
所所应助盖饭不加辣采纳,获得10
5秒前
彭于晏应助shinn采纳,获得10
6秒前
dyc0222应助刘大强采纳,获得30
7秒前
量子星尘发布了新的文献求助10
7秒前
Hello应助letter采纳,获得10
7秒前
淡然的老四完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6.1应助QH采纳,获得10
10秒前
zxcdsw应助Kail采纳,获得10
10秒前
11秒前
alu完成签到,获得积分10
11秒前
wailiii发布了新的文献求助10
11秒前
善学以致用应助佐小叶采纳,获得10
12秒前
天天快乐应助mwiyi采纳,获得10
12秒前
13秒前
13秒前
郑州12138完成签到,获得积分10
13秒前
14秒前
14秒前
CipherSage应助白华苍松采纳,获得10
14秒前
zxcdsw应助rushfuture采纳,获得10
15秒前
15秒前
16秒前
16秒前
RYK发布了新的文献求助10
16秒前
tomatoli发布了新的文献求助10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826378
求助须知:如何正确求助?哪些是违规求助? 6014938
关于积分的说明 15569392
捐赠科研通 4946629
什么是DOI,文献DOI怎么找? 2664904
邀请新用户注册赠送积分活动 1610755
关于科研通互助平台的介绍 1565665