Building a Kokumi Database and Machine Learning-Based Prediction: A Systematic Computational Study on Kokumi Analysis

预测建模 支持向量机 人工智能 预测值 机器学习 计算机科学 相似性(几何) 品味 化学 医学 内科学 食品科学 图像(数学)
作者
Yi He,Kaifeng Liu,Xitao Yu,Hengzheng Yang,Weiwei Han
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2670-2680 被引量:3
标识
DOI:10.1021/acs.jcim.3c01728
摘要

Kokumi is a subtle sensation characterized by a sense of fullness, continuity, and thickness. Traditional methods of taste discovery and analysis, including those of kokumi, have been labor-intensive and costly, thus necessitating the emergence of computational methods as critical strategies in molecular taste analysis and prediction. In this study, we undertook a comprehensive analysis, prediction, and screening of the kokumi compounds. We categorized 285 kokumi compounds from a previously unreleased kokumi database into five groups based on their molecular characteristics. Moreover, we predicted kokumi/non-kokumi and multi-flavor compositions using six structure–taste relationship models: MLP-E3FP, MLP-PLIF, MLP-RDKFP, SVM-RDKFP, RF-RDKFP, and WeaveGNN feature of Atoms and Bonds. These six predictors exhibited diverse performance levels across two different models. For kokumi/non-kokumi prediction, the WeaveGNN model showed an exceptional predictive AUC value (0.94), outperforming the other models (0.87, 0.90, 0.89, 0.92, and 0.78). For multi-flavor prediction, the MLP-E3FP model demonstrated a higher predictive AUC and MCC value (0.94 and 0.74) than the others (0.73 and 0.33; 0.92 and 0.70; 0.95 and 0.73; 0.94 and 0.64; and 0.88 and 0.69). This data highlights the model's proficiency in accurately predicting kokumi molecules. As a result, we sourced kokumi active compounds through a high-throughput screening of over 100 million molecules, further refined by toxicity and similarity screening. Lastly, we launched a web platform, KokumiPD (https://www.kokumipd.com/), offering a comprehensive kokumi database and online prediction services for users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ccCherub完成签到,获得积分10
1秒前
CodeCraft应助石会发采纳,获得10
1秒前
2秒前
随便完成签到,获得积分10
2秒前
3秒前
大个应助GXGXGX采纳,获得10
4秒前
8秒前
十七发布了新的文献求助20
9秒前
sussiczdh完成签到,获得积分10
10秒前
12秒前
12秒前
称心翠容完成签到,获得积分10
12秒前
12秒前
自觉的时光完成签到,获得积分10
13秒前
石会发发布了新的文献求助10
13秒前
小晨完成签到 ,获得积分10
13秒前
16秒前
伶俐的星月完成签到,获得积分10
16秒前
随便发布了新的文献求助10
17秒前
19秒前
Yuxiao发布了新的文献求助30
19秒前
20秒前
务实土豆完成签到 ,获得积分10
20秒前
21秒前
21秒前
肖恩完成签到,获得积分10
23秒前
24秒前
KIKI发布了新的文献求助10
24秒前
25秒前
26秒前
cao完成签到,获得积分10
28秒前
30秒前
诗亭完成签到,获得积分10
31秒前
32秒前
33秒前
十七完成签到,获得积分10
35秒前
38秒前
39秒前
55发布了新的文献求助10
39秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723483
关于积分的说明 7481948
捐赠科研通 2370550
什么是DOI,文献DOI怎么找? 1257057
科研通“疑难数据库(出版商)”最低求助积分说明 609800
版权声明 596861