Building a Kokumi Database and Machine Learning-Based Prediction: A Systematic Computational Study on Kokumi Analysis

预测建模 支持向量机 人工智能 预测值 机器学习 计算机科学 相似性(几何) 品味 化学 医学 内科学 食品科学 图像(数学)
作者
Yi He,Kaifeng Liu,Xiangyu Yu,Hengzheng Yang,Weiwei Han
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2670-2680 被引量:3
标识
DOI:10.1021/acs.jcim.3c01728
摘要

Kokumi is a subtle sensation characterized by a sense of fullness, continuity, and thickness. Traditional methods of taste discovery and analysis, including those of kokumi, have been labor-intensive and costly, thus necessitating the emergence of computational methods as critical strategies in molecular taste analysis and prediction. In this study, we undertook a comprehensive analysis, prediction, and screening of the kokumi compounds. We categorized 285 kokumi compounds from a previously unreleased kokumi database into five groups based on their molecular characteristics. Moreover, we predicted kokumi/non-kokumi and multi-flavor compositions using six structure–taste relationship models: MLP-E3FP, MLP-PLIF, MLP-RDKFP, SVM-RDKFP, RF-RDKFP, and WeaveGNN feature of Atoms and Bonds. These six predictors exhibited diverse performance levels across two different models. For kokumi/non-kokumi prediction, the WeaveGNN model showed an exceptional predictive AUC value (0.94), outperforming the other models (0.87, 0.90, 0.89, 0.92, and 0.78). For multi-flavor prediction, the MLP-E3FP model demonstrated a higher predictive AUC and MCC value (0.94 and 0.74) than the others (0.73 and 0.33; 0.92 and 0.70; 0.95 and 0.73; 0.94 and 0.64; and 0.88 and 0.69). This data highlights the model's proficiency in accurately predicting kokumi molecules. As a result, we sourced kokumi active compounds through a high-throughput screening of over 100 million molecules, further refined by toxicity and similarity screening. Lastly, we launched a web platform, KokumiPD (https://www.kokumipd.com/), offering a comprehensive kokumi database and online prediction services for users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助灵巧荆采纳,获得10
1秒前
尼古拉斯二狗蛋完成签到,获得积分10
1秒前
SCI发布了新的文献求助10
1秒前
1秒前
1秒前
畅快的谷梦完成签到,获得积分10
1秒前
1秒前
猪猪hero发布了新的文献求助10
2秒前
...完成签到,获得积分10
2秒前
2秒前
pluto应助Frank采纳,获得10
3秒前
三磷酸腺苷完成签到 ,获得积分10
3秒前
3秒前
请叫我风吹麦浪应助jbhb采纳,获得10
3秒前
3秒前
小李叭叭完成签到,获得积分10
4秒前
打打应助LiShin采纳,获得10
5秒前
5秒前
Orange应助luuuuuu采纳,获得10
6秒前
6秒前
个性的大地完成签到,获得积分10
7秒前
kawayifenm完成签到,获得积分10
7秒前
lxh2424发布了新的文献求助30
7秒前
Rezeal完成签到 ,获得积分10
7秒前
w.h发布了新的文献求助10
7秒前
星星发布了新的文献求助10
7秒前
可爱的函函应助jy采纳,获得10
8秒前
seal完成签到,获得积分10
8秒前
你hao发布了新的文献求助10
8秒前
8秒前
yml完成签到,获得积分10
8秒前
小只bb发布了新的文献求助30
9秒前
有益完成签到,获得积分10
9秒前
10秒前
zhui发布了新的文献求助10
10秒前
嘻嘻发布了新的文献求助10
11秒前
斯文静曼发布了新的文献求助10
11秒前
yml发布了新的文献求助10
12秒前
ixxxy完成签到,获得积分10
12秒前
猪猪hero发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794