亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building a Kokumi Database and Machine Learning-Based Prediction: A Systematic Computational Study on Kokumi Analysis

预测建模 支持向量机 人工智能 预测值 机器学习 计算机科学 相似性(几何) 品味 化学 医学 内科学 食品科学 图像(数学)
作者
Yi He,Kaifeng Liu,Xiangyu Yu,Hengzheng Yang,Weiwei Han
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2670-2680 被引量:16
标识
DOI:10.1021/acs.jcim.3c01728
摘要

Kokumi is a subtle sensation characterized by a sense of fullness, continuity, and thickness. Traditional methods of taste discovery and analysis, including those of kokumi, have been labor-intensive and costly, thus necessitating the emergence of computational methods as critical strategies in molecular taste analysis and prediction. In this study, we undertook a comprehensive analysis, prediction, and screening of the kokumi compounds. We categorized 285 kokumi compounds from a previously unreleased kokumi database into five groups based on their molecular characteristics. Moreover, we predicted kokumi/non-kokumi and multi-flavor compositions using six structure-taste relationship models: MLP-E3FP, MLP-PLIF, MLP-RDKFP, SVM-RDKFP, RF-RDKFP, and WeaveGNN feature of Atoms and Bonds. These six predictors exhibited diverse performance levels across two different models. For kokumi/non-kokumi prediction, the WeaveGNN model showed an exceptional predictive AUC value (0.94), outperforming the other models (0.87, 0.90, 0.89, 0.92, and 0.78). For multi-flavor prediction, the MLP-E3FP model demonstrated a higher predictive AUC and MCC value (0.94 and 0.74) than the others (0.73 and 0.33; 0.92 and 0.70; 0.95 and 0.73; 0.94 and 0.64; and 0.88 and 0.69). This data highlights the model's proficiency in accurately predicting kokumi molecules. As a result, we sourced kokumi active compounds through a high-throughput screening of over 100 million molecules, further refined by toxicity and similarity screening. Lastly, we launched a web platform, KokumiPD (https://www.kokumipd.com/), offering a comprehensive kokumi database and online prediction services for users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI6应助壹玖一陆采纳,获得10
3秒前
5秒前
我是老大应助wuzihao采纳,获得10
5秒前
max完成签到,获得积分10
5秒前
7秒前
12秒前
CodeCraft应助传统的书包采纳,获得30
15秒前
Evaporate发布了新的文献求助10
15秒前
15秒前
20秒前
小王完成签到 ,获得积分10
21秒前
浮游应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
浮浮世世应助科研通管家采纳,获得30
25秒前
浮游应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
tdtk发布了新的文献求助10
25秒前
张步完成签到 ,获得积分10
26秒前
27秒前
30秒前
老老实实好好活着完成签到,获得积分10
30秒前
34秒前
zozox完成签到 ,获得积分10
37秒前
李健的小迷弟应助nanne采纳,获得30
37秒前
38秒前
gzwhh发布了新的文献求助30
43秒前
酷波er应助tdtk采纳,获得10
44秒前
45秒前
JamesPei应助zorro3574采纳,获得10
46秒前
49秒前
51秒前
凭什么完成签到,获得积分10
51秒前
53秒前
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助babao采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490