共沉淀
结晶度
分散性
微晶
材料科学
阴极
氨
粒径
粒子(生态学)
纳米晶
过渡金属
纳米技术
矿物学
化学工程
冶金
化学
催化作用
物理化学
地质学
高分子化学
复合材料
工程类
生物化学
海洋学
有机化学
作者
Jiajun Chen,Arturo Gutierrez,Maksim Sultanov,Jianguo Wen,Jason R. Croy,Yan Wang,Venkat Srinivasan,Pallab Barai
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2024-03-12
卷期号:7 (6): 2167-2177
标识
DOI:10.1021/acsaem.3c02830
摘要
This study delves into the synthesis and control of NixMn1–xCO3, a critical class of Mn-rich, Co-free precursors vital for cathode-oxide materials in energy storage and conversion technologies. Employing batch-mode coprecipitation, we systematically generated samples with varying Ni concentrations (x = 0, 0.1, 0.3, 0.5, 0.7, and 0.9) and conducted a comprehensive analysis of their compositions, crystallinities, transition-metal distributions, and particle morphologies through both experimental and computational methods. A significant variation in particle size and crystallinity was observed, contingent on the Ni content. A pivotal transition emerged at Ni concentrations above x = ∼0.5, transforming uniform morphologies, such as spherical, monodisperse, pseudo-single-crystalline particles, into bimodal, polycrystalline structures. Furthermore, the study highlights the role of Ni–ammonia complexes leading to Ni-deficient precipitates and underscores the importance of ammonia concentration in achieving precise Ni content control. This study unveils critical reaction conditions governing Mn-rich precursor properties that are vital for cathode-oxides, emphasizing the need for meticulous synthetic control and offering the potential for practical applications in advanced energy storage and conversion systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI