Deep learning models reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization

概化理论 认知 默认模式网络 神经影像学 心理学 认知心理学 神经科学 人脑 性别特征 发展心理学 生物 内分泌学
作者
Srikanth Ryali,Yuan Zhang,Carlo de los Angeles,Kaustubh Supekar,Vinod Menon
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (9) 被引量:4
标识
DOI:10.1073/pnas.2310012121
摘要

Sex plays a crucial role in human brain development, aging, and the manifestation of psychiatric and neurological disorders. However, our understanding of sex differences in human functional brain organization and their behavioral consequences has been hindered by inconsistent findings and a lack of replication. Here, we address these challenges using a spatiotemporal deep neural network (stDNN) model to uncover latent functional brain dynamics that distinguish male and female brains. Our stDNN model accurately differentiated male and female brains, demonstrating consistently high cross-validation accuracy (>90%), replicability, and generalizability across multisession data from the same individuals and three independent cohorts (N ~ 1,500 young adults aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated with the default mode network, striatum, and limbic network consistently exhibited significant sex differences (effect sizes > 1.5) across sessions and independent cohorts. Furthermore, XAI-derived brain features accurately predicted sex-specific cognitive profiles, a finding that was also independently replicated. Our results demonstrate that sex differences in functional brain dynamics are not only highly replicable and generalizable but also behaviorally relevant, challenging the notion of a continuum in male-female brain organization. Our findings underscore the crucial role of sex as a biological determinant in human brain organization, have significant implications for developing personalized sex-specific biomarkers in psychiatric and neurological disorders, and provide innovative AI-based computational tools for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助dd采纳,获得10
刚刚
3秒前
天天发布了新的文献求助10
3秒前
知更鸟发布了新的文献求助10
4秒前
彭于晏应助甜甜圈采纳,获得10
4秒前
5秒前
6秒前
火山完成签到 ,获得积分10
7秒前
初心完成签到,获得积分10
8秒前
粉色发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
万历发布了新的文献求助10
10秒前
11秒前
yang发布了新的文献求助10
11秒前
OOK完成签到,获得积分10
12秒前
寸愿完成签到,获得积分10
12秒前
vin应助jal采纳,获得20
12秒前
13秒前
13秒前
HHH完成签到,获得积分10
14秒前
15秒前
微笑孤云完成签到 ,获得积分10
16秒前
HHH发布了新的文献求助10
18秒前
18秒前
18秒前
香爆脆发布了新的文献求助10
19秒前
bsn完成签到 ,获得积分10
20秒前
落寞依珊应助跳跃的洪纲采纳,获得20
21秒前
激情的三毒完成签到,获得积分10
21秒前
LF完成签到,获得积分10
21秒前
21秒前
123发布了新的文献求助10
22秒前
mark发布了新的文献求助10
23秒前
Hello应助葡萄采纳,获得30
24秒前
雨过天晴发布了新的文献求助10
24秒前
顾矜应助LZY采纳,获得10
25秒前
夜雨完成签到,获得积分10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545