Deep learning models reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization

概化理论 认知 默认模式网络 神经影像学 心理学 认知心理学 神经科学 人脑 性别特征 发展心理学 生物 内分泌学
作者
Srikanth Ryali,Yuan Zhang,Carlo de los Angeles,Kaustubh Supekar,Vinod Menon
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (9) 被引量:4
标识
DOI:10.1073/pnas.2310012121
摘要

Sex plays a crucial role in human brain development, aging, and the manifestation of psychiatric and neurological disorders. However, our understanding of sex differences in human functional brain organization and their behavioral consequences has been hindered by inconsistent findings and a lack of replication. Here, we address these challenges using a spatiotemporal deep neural network (stDNN) model to uncover latent functional brain dynamics that distinguish male and female brains. Our stDNN model accurately differentiated male and female brains, demonstrating consistently high cross-validation accuracy (>90%), replicability, and generalizability across multisession data from the same individuals and three independent cohorts (N ~ 1,500 young adults aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated with the default mode network, striatum, and limbic network consistently exhibited significant sex differences (effect sizes > 1.5) across sessions and independent cohorts. Furthermore, XAI-derived brain features accurately predicted sex-specific cognitive profiles, a finding that was also independently replicated. Our results demonstrate that sex differences in functional brain dynamics are not only highly replicable and generalizable but also behaviorally relevant, challenging the notion of a continuum in male-female brain organization. Our findings underscore the crucial role of sex as a biological determinant in human brain organization, have significant implications for developing personalized sex-specific biomarkers in psychiatric and neurological disorders, and provide innovative AI-based computational tools for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能量球完成签到,获得积分10
刚刚
loong完成签到,获得积分10
3秒前
LIM发布了新的文献求助10
4秒前
科研小白完成签到,获得积分10
5秒前
satchzhao完成签到,获得积分10
8秒前
Jnest完成签到 ,获得积分10
9秒前
jiahao完成签到,获得积分10
10秒前
Yxy完成签到 ,获得积分10
11秒前
11秒前
优美的风完成签到,获得积分10
12秒前
李雪松完成签到 ,获得积分10
16秒前
jiahao发布了新的文献求助10
16秒前
舒服的鱼完成签到 ,获得积分10
17秒前
火花完成签到 ,获得积分10
19秒前
不吃了完成签到 ,获得积分10
20秒前
豆浆来点蒜泥完成签到,获得积分10
22秒前
ptjam完成签到,获得积分10
23秒前
seven完成签到,获得积分10
25秒前
DJ完成签到,获得积分10
26秒前
MHCL完成签到 ,获得积分10
26秒前
27秒前
隐形冷雁应助一招将死你采纳,获得10
27秒前
nanfeng完成签到 ,获得积分10
28秒前
哈哈哈完成签到,获得积分10
31秒前
背后芝麻完成签到,获得积分10
31秒前
小周周完成签到 ,获得积分10
31秒前
大方忆秋完成签到,获得积分10
32秒前
神勇的晟睿完成签到,获得积分10
33秒前
泠璃发布了新的文献求助10
33秒前
小王同学完成签到,获得积分10
34秒前
花无双完成签到,获得积分0
34秒前
六碗鱼完成签到 ,获得积分10
35秒前
gxpjzbg完成签到,获得积分10
37秒前
JXDYYZK完成签到,获得积分10
37秒前
诸葛翼德完成签到,获得积分10
39秒前
42秒前
李爱国应助坚定的可愁采纳,获得10
42秒前
无语的代真完成签到,获得积分10
43秒前
有魅力哈密瓜完成签到,获得积分10
44秒前
微热山丘完成签到,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011