PNMC: Four-dimensional conebeam CT reconstruction combining prior network and motion compensation

人工智能 计算机科学 计算机视觉 迭代重建 图像质量 保险丝(电气) 运动(物理) 图像(数学) 模式识别(心理学) 电气工程 工程类
作者
Zhengwei Ou,Jiayi Xie,Ze Teng,Xianghong Wang,Peng Jin,Jichen Du,Mingchao Ding,Huihui Li,Yang Chen,Tianye Niu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108145-108145
标识
DOI:10.1016/j.compbiomed.2024.108145
摘要

Four-dimensional conebeam computed tomography (4D CBCT) is an efficient technique to overcome motion artifacts caused by organ motion during breathing. 4D CBCT reconstruction in a single scan usually divides projections into different groups of sparsely sampled data based on the respiratory phases. The reconstructed images within each group present poor image quality due to the limited number of projections. To improve the image quality of 4D CBCT in a single scan, we propose a novel reconstruction scheme that combines prior knowledge with motion compensation. We apply the reconstructed images of the full projections within a single routine as prior knowledge, providing structural information for the network to enhance the restoration structure. The prior network (PN-Net) is proposed to extract features of prior knowledge and fuse them with the sparsely sampled data using an attention mechanism. The prior knowledge guides the reconstruction process to restore the approximate organ structure and alleviates severe streaking artifacts. The deformation vector field (DVF) extracted using deformable image registration among different phases is then applied in the motion-compensated ordered-subset simultaneous algebraic reconstruction algorithm to generate 4D CBCT images. Proposed method has been evaluated using simulated and clinical datasets and has shown promising results by comparative experiment. Compared with previous methods, our approach exhibits significant improvements across various evaluation metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助章半仙采纳,获得10
刚刚
刚刚
doctor小陈发布了新的文献求助10
刚刚
科目三应助高兴的万宝路采纳,获得10
1秒前
乐乐应助顾文采纳,获得10
1秒前
2秒前
3秒前
3秒前
哦豁完成签到 ,获得积分10
3秒前
4秒前
júpiter发布了新的文献求助10
4秒前
louise应助刻苦秋尽采纳,获得10
5秒前
5秒前
hhl完成签到,获得积分10
5秒前
沉静的清涟完成签到,获得积分10
5秒前
zwjhbz完成签到,获得积分10
5秒前
6秒前
科研通AI6应助pjson15376449841采纳,获得10
6秒前
星辰大海应助wuxunxun2015采纳,获得10
7秒前
7秒前
无限荆完成签到 ,获得积分10
8秒前
英姑应助George采纳,获得10
8秒前
LZJ发布了新的文献求助10
8秒前
9秒前
搜文献的北北完成签到,获得积分10
9秒前
9秒前
Ava应助kantanna采纳,获得10
9秒前
tinale_huang发布了新的文献求助30
10秒前
tinale_huang发布了新的文献求助30
10秒前
tinale_huang发布了新的文献求助30
10秒前
tinale_huang发布了新的文献求助30
10秒前
星辰大海应助冷静火龙果采纳,获得30
10秒前
10秒前
Nico完成签到 ,获得积分10
10秒前
11秒前
亦木发布了新的文献求助10
12秒前
Lucas应助nuonuo采纳,获得10
12秒前
温婉的篮球完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812