PNMC: Four-dimensional conebeam CT reconstruction combining prior network and motion compensation

人工智能 计算机科学 计算机视觉 迭代重建 图像质量 保险丝(电气) 运动(物理) 图像(数学) 模式识别(心理学) 电气工程 工程类
作者
Zhengwei Ou,Jiayi Xie,Ze Teng,Xianghong Wang,Peng Jin,Jichen Du,Mingchao Ding,Huihui Li,Yang Chen,Tianye Niu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108145-108145
标识
DOI:10.1016/j.compbiomed.2024.108145
摘要

Four-dimensional conebeam computed tomography (4D CBCT) is an efficient technique to overcome motion artifacts caused by organ motion during breathing. 4D CBCT reconstruction in a single scan usually divides projections into different groups of sparsely sampled data based on the respiratory phases. The reconstructed images within each group present poor image quality due to the limited number of projections. To improve the image quality of 4D CBCT in a single scan, we propose a novel reconstruction scheme that combines prior knowledge with motion compensation. We apply the reconstructed images of the full projections within a single routine as prior knowledge, providing structural information for the network to enhance the restoration structure. The prior network (PN-Net) is proposed to extract features of prior knowledge and fuse them with the sparsely sampled data using an attention mechanism. The prior knowledge guides the reconstruction process to restore the approximate organ structure and alleviates severe streaking artifacts. The deformation vector field (DVF) extracted using deformable image registration among different phases is then applied in the motion-compensated ordered-subset simultaneous algebraic reconstruction algorithm to generate 4D CBCT images. Proposed method has been evaluated using simulated and clinical datasets and has shown promising results by comparative experiment. Compared with previous methods, our approach exhibits significant improvements across various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Yanjjjjyun采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
宋浩奇完成签到,获得积分10
2秒前
3秒前
3秒前
王康发布了新的文献求助10
4秒前
隐形曼青应助Daniel2010采纳,获得10
4秒前
DY驳回了英姑应助
5秒前
精灵夜雨完成签到,获得积分10
5秒前
宋浩奇发布了新的文献求助10
6秒前
iNk应助欧皇采纳,获得10
6秒前
6秒前
6秒前
Tyler发布了新的文献求助10
8秒前
8秒前
科研通AI6应助sifLiu采纳,获得10
8秒前
8秒前
害羞彩虹完成签到,获得积分20
9秒前
没有名称完成签到,获得积分10
9秒前
9秒前
王康完成签到,获得积分10
10秒前
10秒前
冷傲迎梦发布了新的文献求助10
11秒前
搜集达人应助111版采纳,获得10
13秒前
wanwusheng完成签到,获得积分10
15秒前
WUJIAYU完成签到,获得积分10
16秒前
18秒前
suger完成签到,获得积分10
19秒前
22秒前
蔺蔺发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
Yu完成签到,获得积分20
25秒前
废寝忘食发布了新的文献求助10
26秒前
liliuuuuuuuu发布了新的文献求助10
28秒前
ybheart发布了新的文献求助10
29秒前
孙敬涵完成签到,获得积分10
29秒前
Tengami完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415163
求助须知:如何正确求助?哪些是违规求助? 4531822
关于积分的说明 14130468
捐赠科研通 4447366
什么是DOI,文献DOI怎么找? 2439667
邀请新用户注册赠送积分活动 1431779
关于科研通互助平台的介绍 1409365