PNMC: Four-dimensional conebeam CT reconstruction combining prior network and motion compensation

人工智能 计算机科学 计算机视觉 迭代重建 图像质量 保险丝(电气) 运动(物理) 图像(数学) 模式识别(心理学) 电气工程 工程类
作者
Zhengwei Ou,Jiayi Xie,Ze Teng,Xianghong Wang,Peng Jin,Jichen Du,Mingchao Ding,Huihui Li,Yang Chen,Tianye Niu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108145-108145
标识
DOI:10.1016/j.compbiomed.2024.108145
摘要

Four-dimensional conebeam computed tomography (4D CBCT) is an efficient technique to overcome motion artifacts caused by organ motion during breathing. 4D CBCT reconstruction in a single scan usually divides projections into different groups of sparsely sampled data based on the respiratory phases. The reconstructed images within each group present poor image quality due to the limited number of projections. To improve the image quality of 4D CBCT in a single scan, we propose a novel reconstruction scheme that combines prior knowledge with motion compensation. We apply the reconstructed images of the full projections within a single routine as prior knowledge, providing structural information for the network to enhance the restoration structure. The prior network (PN-Net) is proposed to extract features of prior knowledge and fuse them with the sparsely sampled data using an attention mechanism. The prior knowledge guides the reconstruction process to restore the approximate organ structure and alleviates severe streaking artifacts. The deformation vector field (DVF) extracted using deformable image registration among different phases is then applied in the motion-compensated ordered-subset simultaneous algebraic reconstruction algorithm to generate 4D CBCT images. Proposed method has been evaluated using simulated and clinical datasets and has shown promising results by comparative experiment. Compared with previous methods, our approach exhibits significant improvements across various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RFlord发布了新的文献求助10
5秒前
李健的小迷弟应助Lumi采纳,获得30
7秒前
14秒前
海英完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助30
48秒前
53秒前
小点完成签到 ,获得积分10
55秒前
ChatGPT发布了新的文献求助10
1分钟前
Lumi发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
蓝豆子完成签到 ,获得积分10
1分钟前
Superman完成签到 ,获得积分10
1分钟前
alan完成签到 ,获得积分0
1分钟前
jiangjiang完成签到,获得积分10
1分钟前
小山己几完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
leaolf应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
211fjfj完成签到 ,获得积分10
1分钟前
追梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
1分钟前
梦XING完成签到 ,获得积分10
1分钟前
背书强完成签到 ,获得积分10
1分钟前
安琪琪完成签到 ,获得积分10
1分钟前
manmanzhong完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Mason完成签到 ,获得积分10
2分钟前
HuanChen完成签到 ,获得积分10
2分钟前
john完成签到 ,获得积分10
2分钟前
蓝胖子完成签到 ,获得积分10
2分钟前
Lj完成签到,获得积分10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128435
求助须知:如何正确求助?哪些是违规求助? 4331130
关于积分的说明 13494178
捐赠科研通 4167056
什么是DOI,文献DOI怎么找? 2284336
邀请新用户注册赠送积分活动 1285334
关于科研通互助平台的介绍 1225882