Motor current and vibration monitoring dataset for various faults in an E-motor-driven centrifugal pump

定子 转子(电动) 振动 停工期 状态监测 计算机科学 方位(导航) 离心泵 感应电动机 叶轮 汽车工程 工程类 机械工程 电压 可靠性工程 电气工程 声学 物理 人工智能
作者
S. Bruinsma,Rinze Geertsma,Richard Loendersloot,Tiedo Tinga
出处
期刊:Data in Brief [Elsevier]
卷期号:52: 109987-109987 被引量:5
标识
DOI:10.1016/j.dib.2023.109987
摘要

Induction motor driven pumps are a staple in many sectors of industry, and crucial equipment in naval ships. Such machines can suffer from a wide variety of issues, which may cause it to not perform its function. This can either be due to degradation of components over time, or due to incorrect installation or usage. Unexpected failure of the machine causes downtime and lowers the availability. In some cases, it can even lead to collateral damage. To prevent collateral damage and optimise the availability, many asset owners apply condition monitoring, measuring the dynamic response of the system while in operation. Two high-frequency measurement methods are widely accepted for the detection of faults in rotating machinery at an early stage: vibration measurements, and motor current and voltage measurements. These methods can also distinguish between different failure mechanisms and severities. The dataset described in this article presents experimental data of two centrifugal pumps, driven by induction motors through a variable frequency drive. Besides measurements of behaviour that is considered healthy (new bearings, well aligned), the machines have also been subjected to a variety of (simulated) faults. These faults include bearing defects, loose foot, impeller damage, stator winding short, broken rotor bar, soft foot, misalignment, unbalance, coupling degradation, cavitation and bent shaft. Most faults were implemented at multiple levels of severity for multiple motor speeds. Both vibration measurements, and current and voltage measurements were recorded for all cases. The dataset holds value for a wide range of engineers and researchers working on the development and validation of methods for damage detection, identification and diagnostics. Due to the extensive documentation of the presented data, labelling of the data is close to perfect, which makes the data particularly suitable for developing and training machine learning and other AI algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙冉冉完成签到 ,获得积分10
1秒前
顾矜应助taku采纳,获得10
1秒前
开心太阳发布了新的文献求助50
2秒前
李健应助糊糊糊采纳,获得10
3秒前
caicai完成签到,获得积分10
4秒前
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
不安青牛应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得20
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
7秒前
8秒前
msl2023完成签到,获得积分10
8秒前
沛文发布了新的文献求助10
10秒前
chenbring发布了新的文献求助10
11秒前
爱读文献完成签到,获得积分10
12秒前
科研的POWER完成签到,获得积分10
12秒前
13秒前
。.。发布了新的文献求助10
14秒前
华仔应助柒_l采纳,获得10
14秒前
NXNJ完成签到 ,获得积分10
15秒前
大模型应助相宜采纳,获得10
16秒前
16秒前
文艺鞋垫完成签到,获得积分10
17秒前
17秒前
17秒前
20秒前
椹木发布了新的文献求助10
20秒前
taku发布了新的文献求助10
21秒前
周沛沛完成签到 ,获得积分10
25秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463229
求助须知:如何正确求助?哪些是违规求助? 3056638
关于积分的说明 9053048
捐赠科研通 2746497
什么是DOI,文献DOI怎么找? 1506946
科研通“疑难数据库(出版商)”最低求助积分说明 696243
邀请新用户注册赠送积分活动 695849