Stochastic Optimization of Electromagnetic Inertial Mass Dampers in Nonlinear Hybrid Base Isolation Systems Under Seismic Excitations

非线性系统 基础隔离 阻尼器 线性化 控制理论(社会学) 流离失所(心理学) 调谐质量阻尼器 还原(数学) 结构工程 工程类 数学 计算机科学 物理 几何学 量子力学 人工智能 心理学 心理治疗师 控制(管理)
作者
Ying Lei,Xiongjun Yang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
被引量:1
标识
DOI:10.1142/s0219455424502419
摘要

Recently developed inerter-based dampers have been installed at the base layer to reduce base displacement and simultaneously improve the superstructure’s performance. However, in the existing research on optimizing damper parameters, the nonlinear property of base isolation is simplified and stochastic linearization technique is introduced to approximate such nonlinearity, which would inevitably introduce errors. In this paper, an improved method is proposed for stochastic optimization of electromagnetic inertial mass dampers (EIMD) in nonlinear hybrid isolation systems subject to seismic excitations. First, a stochastic seismic excitation is represented by one elementary random variable adopting the dimension-reduction spectral representation method. Then, statistical moments of nonlinear base-isolated structural responses are estimated using two-point estimation method (2PEM). Finally, the EIMD optimal parameters are obtained via the modified directional bat algorithm (MDBA) recently proposed by the authors through minimizing base layer response moments. This proposed improved method could fully consider the base isolation nonlinearity compared with the previous stochastic linearization technique. Moreover, the proposed stochastic optimization of the EIMD only requires two dynamic analyses to achieve its efficiency. A seven-story base-isolated frame building equipped with an EIMD is investigated in the numerical simulation, and results indicate that EIMD optimized by this proposed method obviously outperforms the results by the stochastic linearization technique and the conventional viscous damper (VD) in the base layer displacement reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Erick完成签到,获得积分10
刚刚
好好好发布了新的文献求助10
1秒前
BioRick发布了新的文献求助10
1秒前
2秒前
2秒前
上官若男应助luyao970131采纳,获得10
4秒前
4秒前
星辰大海应助dabao采纳,获得10
5秒前
6秒前
8秒前
9秒前
10秒前
xhm完成签到 ,获得积分10
10秒前
呆萌的天宇完成签到,获得积分10
11秒前
11秒前
小锅完成签到,获得积分10
11秒前
1234354346发布了新的文献求助10
11秒前
ccc完成签到,获得积分10
12秒前
12秒前
14秒前
SUPERDOUBLE发布了新的文献求助10
15秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
Felice应助科研通管家采纳,获得30
16秒前
子车茗应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
子车茗应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
子车茗应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919