CO2 reduction of resolved wall structures: A load-bearing capacity-based modularization and assembly approach

预制混凝土 模块化程序设计 结构工程 模块化设计 模拟退火 承载力 还原(数学) 承重 禁忌搜索 工程类 计算机科学 算法 数学 几何学 操作系统 程序设计语言
作者
Jan Stindt,Alex Maximilian Frey,Patrick Forman,Peter Mark,Gisela Lanza
出处
期刊:Engineering Structures [Elsevier]
卷期号:300: 117197-117197
标识
DOI:10.1016/j.engstruct.2023.117197
摘要

The demand for new housing is constantly growing and cannot be met by artisanal, in-situ construction methods. At the same time, CO2 emissions generated from the construction of new buildings need to be significantly reduced. Precast concrete elements offer the potential for an optimized design with minimal material consumption using high-performance materials. However, this only makes sense when the precast modules can be fabricated in a serial manner. Therefore, a modularization approach is developed that resolves structures into a small number of similar modules to enable an efficient and rapid mass production. Walls and wall-like beams are divided into hexagonal honeycomb structures mainly consisting of Y-modules and columns. The load-bearing capacity of these modules is described holistically for bending, shear and stability. By means of clustering, modules with low CO2 emissions with respect to their load-bearing capacity are grouped into construction kits. These kits are then used to assemble the final honeycomb structures. This combinatorial optimization problem is solved with two metaheuristics, Tabu Search and Simulated Annealing. Three case studies show that this modular approach reduces CO2 emissions by up to 80% compared to monolithic structures. The optimized positioning saves a further 23% with the same load-bearing capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lemon应助科研通管家采纳,获得20
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
打打应助聪聪great采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
1秒前
无名完成签到,获得积分10
1秒前
打打应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得40
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
只A不B应助科研通管家采纳,获得30
1秒前
1秒前
SYanan完成签到 ,获得积分10
2秒前
Owen应助大方嵩采纳,获得10
2秒前
3秒前
3秒前
3秒前
耍酷花卷发布了新的文献求助10
3秒前
孟陬十一完成签到,获得积分10
4秒前
4秒前
搞怪的凡蕾完成签到,获得积分10
5秒前
6秒前
6秒前
万能图书馆应助刘星星采纳,获得10
7秒前
Ting完成签到 ,获得积分10
7秒前
7秒前
SciGPT应助希夷采纳,获得10
7秒前
7秒前
调皮黑猫完成签到,获得积分10
7秒前
7秒前
Sunny完成签到,获得积分10
7秒前
8秒前
应作如是观完成签到,获得积分10
8秒前
聪聪great完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
晓军驳回了1ssd应助
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762