亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity

计算机科学 深度学习 人工智能 嵌入 卷积神经网络 二进制数 机器学习 选择(遗传算法) 选型 模板 模式识别(心理学) 数学 算术 程序设计语言
作者
Zhenjiao Du,Xingjian Ding,Yixiang Xu,Yonghui Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:10
标识
DOI:10.1093/bib/bbad135
摘要

Identification of potent peptides through model prediction can reduce benchwork in wet experiments. However, the conventional process of model buildings can be complex and time consuming due to challenges such as peptide representation, feature selection, model selection and hyperparameter tuning. Recently, advanced pretrained deep learning-based language models (LMs) have been released for protein sequence embedding and applied to structure and function prediction. Based on these developments, we have developed UniDL4BioPep, a universal deep-learning model architecture for transfer learning in bioactive peptide binary classification modeling. It can directly assist users in training a high-performance deep-learning model with a fixed architecture and achieve cutting-edge performance to meet the demands in efficiently novel bioactive peptide discovery. To the best of our best knowledge, this is the first time that a pretrained biological language model is utilized for peptide embeddings and successfully predicts peptide bioactivities through large-scale evaluations of those peptide embeddings. The model was also validated through uniform manifold approximation and projection analysis. By combining the LM with a convolutional neural network, UniDL4BioPep achieved greater performances than the respective state-of-the-art models for 15 out of 20 different bioactivity dataset prediction tasks. The accuracy, Mathews correlation coefficient and area under the curve were 0.7-7, 1.23-26.7 and 0.3-25.6% higher, respectively. A user-friendly web server of UniDL4BioPep for the tested bioactivities is established and freely accessible at https://nepc2pvmzy.us-east-1.awsapprunner.com. The source codes, datasets and templates of UniDL4BioPep for other bioactivity fitting and prediction tasks are available at https://github.com/dzjxzyd/UniDL4BioPep.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
tt发布了新的文献求助10
10秒前
13秒前
15秒前
xin发布了新的文献求助10
18秒前
米饭儿完成签到 ,获得积分10
19秒前
38秒前
白华苍松发布了新的文献求助10
42秒前
42秒前
科研通AI6应助xin采纳,获得30
45秒前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
Shicheng完成签到,获得积分10
1分钟前
1分钟前
yuon发布了新的文献求助10
1分钟前
1分钟前
Lucas应助tt采纳,获得10
1分钟前
李爱国应助Jerry采纳,获得10
1分钟前
1分钟前
浮游应助zhangyuanyue1234采纳,获得10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
领导范儿应助TZMY采纳,获得10
2分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
2分钟前
TZMY发布了新的文献求助10
2分钟前
yuon完成签到,获得积分10
2分钟前
2分钟前
2分钟前
nessa完成签到 ,获得积分10
2分钟前
Criminology34应助de采纳,获得10
2分钟前
慕青应助核桃采纳,获得10
2分钟前
在水一方应助核桃采纳,获得10
2分钟前
shhoing应助核桃采纳,获得10
2分钟前
上官若男应助核桃采纳,获得10
2分钟前
共享精神应助核桃采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538641
求助须知:如何正确求助?哪些是违规求助? 4625711
关于积分的说明 14596757
捐赠科研通 4566378
什么是DOI,文献DOI怎么找? 2503216
邀请新用户注册赠送积分活动 1481345
关于科研通互助平台的介绍 1452701