亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity

计算机科学 深度学习 人工智能 嵌入 卷积神经网络 二进制数 机器学习 选择(遗传算法) 选型 模板 模式识别(心理学) 数学 算术 程序设计语言
作者
Zhenjiao Du,Xingjian Ding,Yixiang Xu,Yonghui Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:10
标识
DOI:10.1093/bib/bbad135
摘要

Identification of potent peptides through model prediction can reduce benchwork in wet experiments. However, the conventional process of model buildings can be complex and time consuming due to challenges such as peptide representation, feature selection, model selection and hyperparameter tuning. Recently, advanced pretrained deep learning-based language models (LMs) have been released for protein sequence embedding and applied to structure and function prediction. Based on these developments, we have developed UniDL4BioPep, a universal deep-learning model architecture for transfer learning in bioactive peptide binary classification modeling. It can directly assist users in training a high-performance deep-learning model with a fixed architecture and achieve cutting-edge performance to meet the demands in efficiently novel bioactive peptide discovery. To the best of our best knowledge, this is the first time that a pretrained biological language model is utilized for peptide embeddings and successfully predicts peptide bioactivities through large-scale evaluations of those peptide embeddings. The model was also validated through uniform manifold approximation and projection analysis. By combining the LM with a convolutional neural network, UniDL4BioPep achieved greater performances than the respective state-of-the-art models for 15 out of 20 different bioactivity dataset prediction tasks. The accuracy, Mathews correlation coefficient and area under the curve were 0.7-7, 1.23-26.7 and 0.3-25.6% higher, respectively. A user-friendly web server of UniDL4BioPep for the tested bioactivities is established and freely accessible at https://nepc2pvmzy.us-east-1.awsapprunner.com. The source codes, datasets and templates of UniDL4BioPep for other bioactivity fitting and prediction tasks are available at https://github.com/dzjxzyd/UniDL4BioPep.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wtl发布了新的文献求助10
1秒前
10秒前
yanghao完成签到,获得积分10
12秒前
基金中中中完成签到,获得积分10
12秒前
15秒前
16秒前
fengyun1990发布了新的文献求助10
18秒前
斯文败类应助yuanyuan采纳,获得10
18秒前
18秒前
余闻问发布了新的文献求助10
20秒前
无花果应助wtl采纳,获得10
21秒前
单薄绿竹完成签到,获得积分10
23秒前
余闻问完成签到,获得积分10
25秒前
29秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
32秒前
K先生完成签到 ,获得积分10
32秒前
光亮的安双完成签到,获得积分10
34秒前
41秒前
脑洞疼应助fengyun1990采纳,获得10
43秒前
白奕发布了新的文献求助10
47秒前
Willow完成签到,获得积分10
47秒前
48秒前
在水一方应助白奕采纳,获得30
52秒前
yuanyuan发布了新的文献求助10
53秒前
腼腆钵钵鸡完成签到 ,获得积分10
58秒前
程淑弟发布了新的文献求助10
1分钟前
xiawanren00完成签到,获得积分10
1分钟前
在水一方应助yuanyuan采纳,获得10
1分钟前
山川日月完成签到,获得积分10
1分钟前
FashionBoy应助追风采纳,获得10
1分钟前
1分钟前
黙宇循光完成签到 ,获得积分10
1分钟前
dj发布了新的文献求助20
1分钟前
king完成签到 ,获得积分10
1分钟前
上官若男应助程淑弟采纳,获得10
1分钟前
1分钟前
1分钟前
平淡如天完成签到,获得积分10
1分钟前
ayayaya完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898