亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity

计算机科学 深度学习 人工智能 嵌入 卷积神经网络 二进制数 机器学习 选择(遗传算法) 选型 模板 模式识别(心理学) 数学 算术 程序设计语言
作者
Zhenjiao Du,Xingjian Ding,Yixiang Xu,Yonghui Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:10
标识
DOI:10.1093/bib/bbad135
摘要

Identification of potent peptides through model prediction can reduce benchwork in wet experiments. However, the conventional process of model buildings can be complex and time consuming due to challenges such as peptide representation, feature selection, model selection and hyperparameter tuning. Recently, advanced pretrained deep learning-based language models (LMs) have been released for protein sequence embedding and applied to structure and function prediction. Based on these developments, we have developed UniDL4BioPep, a universal deep-learning model architecture for transfer learning in bioactive peptide binary classification modeling. It can directly assist users in training a high-performance deep-learning model with a fixed architecture and achieve cutting-edge performance to meet the demands in efficiently novel bioactive peptide discovery. To the best of our best knowledge, this is the first time that a pretrained biological language model is utilized for peptide embeddings and successfully predicts peptide bioactivities through large-scale evaluations of those peptide embeddings. The model was also validated through uniform manifold approximation and projection analysis. By combining the LM with a convolutional neural network, UniDL4BioPep achieved greater performances than the respective state-of-the-art models for 15 out of 20 different bioactivity dataset prediction tasks. The accuracy, Mathews correlation coefficient and area under the curve were 0.7-7, 1.23-26.7 and 0.3-25.6% higher, respectively. A user-friendly web server of UniDL4BioPep for the tested bioactivities is established and freely accessible at https://nepc2pvmzy.us-east-1.awsapprunner.com. The source codes, datasets and templates of UniDL4BioPep for other bioactivity fitting and prediction tasks are available at https://github.com/dzjxzyd/UniDL4BioPep.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助迷路的尔竹采纳,获得10
3秒前
Yygz314完成签到,获得积分10
3秒前
liuynnn完成签到,获得积分20
4秒前
webmaster完成签到,获得积分10
8秒前
NexusExplorer应助坩埚甘茶白采纳,获得10
11秒前
阳光迎夏完成签到 ,获得积分10
13秒前
13秒前
充电宝应助xuz采纳,获得10
15秒前
15秒前
益笙鸿老板完成签到 ,获得积分10
16秒前
SiboN完成签到,获得积分10
17秒前
张流筝完成签到 ,获得积分10
17秒前
17秒前
高兴可乐完成签到,获得积分20
22秒前
liuynnn发布了新的文献求助10
23秒前
平凡完成签到,获得积分10
24秒前
wanci应助开朗问晴采纳,获得10
24秒前
28秒前
34秒前
所所应助xuz采纳,获得10
35秒前
华仔应助Bokuto采纳,获得10
37秒前
老王发布了新的文献求助10
42秒前
充电宝应助江经纬采纳,获得10
42秒前
李爱国应助强健的长颈鹿采纳,获得10
46秒前
戳戳完成签到 ,获得积分10
48秒前
搜集达人应助德尔塔捱斯采纳,获得10
50秒前
完美世界应助xuz采纳,获得10
53秒前
54秒前
科目三应助xalone采纳,获得10
57秒前
58秒前
1分钟前
111关闭了111文献求助
1分钟前
1分钟前
lokiyyy完成签到,获得积分10
1分钟前
时光机带哥走完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ding应助清浅采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881