UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity

计算机科学 深度学习 人工智能 嵌入 卷积神经网络 二进制数 机器学习 选择(遗传算法) 选型 模板 模式识别(心理学) 数学 算术 程序设计语言
作者
Zhenjiao Du,Xingjian Ding,Yixiang Xu,Yonghui Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:10
标识
DOI:10.1093/bib/bbad135
摘要

Identification of potent peptides through model prediction can reduce benchwork in wet experiments. However, the conventional process of model buildings can be complex and time consuming due to challenges such as peptide representation, feature selection, model selection and hyperparameter tuning. Recently, advanced pretrained deep learning-based language models (LMs) have been released for protein sequence embedding and applied to structure and function prediction. Based on these developments, we have developed UniDL4BioPep, a universal deep-learning model architecture for transfer learning in bioactive peptide binary classification modeling. It can directly assist users in training a high-performance deep-learning model with a fixed architecture and achieve cutting-edge performance to meet the demands in efficiently novel bioactive peptide discovery. To the best of our best knowledge, this is the first time that a pretrained biological language model is utilized for peptide embeddings and successfully predicts peptide bioactivities through large-scale evaluations of those peptide embeddings. The model was also validated through uniform manifold approximation and projection analysis. By combining the LM with a convolutional neural network, UniDL4BioPep achieved greater performances than the respective state-of-the-art models for 15 out of 20 different bioactivity dataset prediction tasks. The accuracy, Mathews correlation coefficient and area under the curve were 0.7-7, 1.23-26.7 and 0.3-25.6% higher, respectively. A user-friendly web server of UniDL4BioPep for the tested bioactivities is established and freely accessible at https://nepc2pvmzy.us-east-1.awsapprunner.com. The source codes, datasets and templates of UniDL4BioPep for other bioactivity fitting and prediction tasks are available at https://github.com/dzjxzyd/UniDL4BioPep.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美的月饼完成签到,获得积分10
刚刚
刚刚
咚咚糖完成签到,获得积分10
刚刚
何日寻完成签到,获得积分10
刚刚
1秒前
叶素绿完成签到,获得积分10
1秒前
快乐书双发布了新的文献求助10
1秒前
Autin完成签到,获得积分0
1秒前
开心的饼干完成签到,获得积分20
2秒前
LQ完成签到,获得积分10
2秒前
2秒前
关畅澎完成签到,获得积分10
2秒前
3秒前
梅比乌斯博士救救我完成签到 ,获得积分10
3秒前
whuhustwit完成签到,获得积分10
3秒前
wintersss完成签到,获得积分10
3秒前
跳跃的幻露完成签到,获得积分10
4秒前
4秒前
4秒前
深情安青应助18485649437采纳,获得10
4秒前
扁舟灬完成签到,获得积分10
4秒前
白子墨发布了新的文献求助10
4秒前
羽言完成签到,获得积分10
5秒前
5秒前
5秒前
随风发布了新的文献求助10
5秒前
合成研究菜鸟完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助20
5秒前
成就祥发布了新的文献求助10
5秒前
充电宝应助钙帮弟子采纳,获得10
5秒前
zqy完成签到 ,获得积分10
6秒前
abner发布了新的文献求助10
6秒前
luoziwuhui完成签到,获得积分10
7秒前
九九完成签到,获得积分10
7秒前
咚咚糖发布了新的文献求助10
7秒前
93发布了新的文献求助10
7秒前
小蘑菇应助谭访冬采纳,获得10
8秒前
mawenxing完成签到,获得积分10
8秒前
风灵无畏完成签到,获得积分10
8秒前
坦率棉花糖完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959