UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity

计算机科学 深度学习 人工智能 嵌入 卷积神经网络 二进制数 机器学习 选择(遗传算法) 选型 模板 模式识别(心理学) 数学 算术 程序设计语言
作者
Zhenjiao Du,Xingjian Ding,Yixiang Xu,Yonghui Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:10
标识
DOI:10.1093/bib/bbad135
摘要

Identification of potent peptides through model prediction can reduce benchwork in wet experiments. However, the conventional process of model buildings can be complex and time consuming due to challenges such as peptide representation, feature selection, model selection and hyperparameter tuning. Recently, advanced pretrained deep learning-based language models (LMs) have been released for protein sequence embedding and applied to structure and function prediction. Based on these developments, we have developed UniDL4BioPep, a universal deep-learning model architecture for transfer learning in bioactive peptide binary classification modeling. It can directly assist users in training a high-performance deep-learning model with a fixed architecture and achieve cutting-edge performance to meet the demands in efficiently novel bioactive peptide discovery. To the best of our best knowledge, this is the first time that a pretrained biological language model is utilized for peptide embeddings and successfully predicts peptide bioactivities through large-scale evaluations of those peptide embeddings. The model was also validated through uniform manifold approximation and projection analysis. By combining the LM with a convolutional neural network, UniDL4BioPep achieved greater performances than the respective state-of-the-art models for 15 out of 20 different bioactivity dataset prediction tasks. The accuracy, Mathews correlation coefficient and area under the curve were 0.7-7, 1.23-26.7 and 0.3-25.6% higher, respectively. A user-friendly web server of UniDL4BioPep for the tested bioactivities is established and freely accessible at https://nepc2pvmzy.us-east-1.awsapprunner.com. The source codes, datasets and templates of UniDL4BioPep for other bioactivity fitting and prediction tasks are available at https://github.com/dzjxzyd/UniDL4BioPep.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮安双完成签到,获得积分20
1秒前
Lemon完成签到,获得积分10
1秒前
sci一区作者完成签到,获得积分20
2秒前
包容柜子发布了新的文献求助10
2秒前
hhllhh发布了新的文献求助10
3秒前
河丫应助阳洋洋采纳,获得10
3秒前
3秒前
落霞与孤鹜齐飞完成签到,获得积分10
4秒前
4秒前
4秒前
hbuhfl完成签到,获得积分10
5秒前
小瑜完成签到,获得积分10
6秒前
小蘑菇应助Lemon采纳,获得10
6秒前
betty2009完成签到,获得积分10
6秒前
星星完成签到,获得积分10
6秒前
乐观如松关注了科研通微信公众号
6秒前
7秒前
Leo发布了新的文献求助20
8秒前
8秒前
幸运星完成签到,获得积分10
8秒前
包容柜子完成签到,获得积分10
9秒前
马某发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
丞123完成签到,获得积分10
9秒前
花开的石头完成签到,获得积分10
10秒前
向秋完成签到,获得积分10
10秒前
刘聪聪发布了新的文献求助10
10秒前
wanci应助树下采纳,获得10
11秒前
11秒前
clm完成签到 ,获得积分10
11秒前
11秒前
11秒前
桐桐应助幸运鱼采纳,获得10
11秒前
成就的芝完成签到 ,获得积分10
11秒前
hhllhh完成签到,获得积分10
12秒前
hhh发布了新的文献求助10
15秒前
迅速曼冬发布了新的文献求助10
15秒前
16秒前
充电宝应助票子采纳,获得10
18秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029