UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity

计算机科学 深度学习 人工智能 嵌入 卷积神经网络 二进制数 机器学习 选择(遗传算法) 选型 模板 模式识别(心理学) 数学 算术 程序设计语言
作者
Zhenjiao Du,Xingjian Ding,Yixiang Xu,Yonghui Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:10
标识
DOI:10.1093/bib/bbad135
摘要

Identification of potent peptides through model prediction can reduce benchwork in wet experiments. However, the conventional process of model buildings can be complex and time consuming due to challenges such as peptide representation, feature selection, model selection and hyperparameter tuning. Recently, advanced pretrained deep learning-based language models (LMs) have been released for protein sequence embedding and applied to structure and function prediction. Based on these developments, we have developed UniDL4BioPep, a universal deep-learning model architecture for transfer learning in bioactive peptide binary classification modeling. It can directly assist users in training a high-performance deep-learning model with a fixed architecture and achieve cutting-edge performance to meet the demands in efficiently novel bioactive peptide discovery. To the best of our best knowledge, this is the first time that a pretrained biological language model is utilized for peptide embeddings and successfully predicts peptide bioactivities through large-scale evaluations of those peptide embeddings. The model was also validated through uniform manifold approximation and projection analysis. By combining the LM with a convolutional neural network, UniDL4BioPep achieved greater performances than the respective state-of-the-art models for 15 out of 20 different bioactivity dataset prediction tasks. The accuracy, Mathews correlation coefficient and area under the curve were 0.7-7, 1.23-26.7 and 0.3-25.6% higher, respectively. A user-friendly web server of UniDL4BioPep for the tested bioactivities is established and freely accessible at https://nepc2pvmzy.us-east-1.awsapprunner.com. The source codes, datasets and templates of UniDL4BioPep for other bioactivity fitting and prediction tasks are available at https://github.com/dzjxzyd/UniDL4BioPep.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
揽月完成签到,获得积分10
1秒前
核桃发布了新的文献求助10
2秒前
CNYDNZB发布了新的文献求助30
2秒前
asdfzxcv应助小冯采纳,获得10
2秒前
2秒前
SJJ应助RYS采纳,获得30
2秒前
善学以致用应助龙1采纳,获得10
2秒前
3秒前
3秒前
Earrr完成签到,获得积分10
4秒前
俊逸寻菡完成签到,获得积分10
4秒前
传奇3应助cherish采纳,获得10
5秒前
wanci应助拾忆采纳,获得10
5秒前
安利完成签到,获得积分10
5秒前
CSX完成签到,获得积分10
5秒前
forever发布了新的文献求助10
6秒前
6秒前
6秒前
asdfzxcv应助六尺巷采纳,获得10
6秒前
XLC发布了新的文献求助10
7秒前
7秒前
深情安青应助WQ采纳,获得10
7秒前
7秒前
Gyz发布了新的文献求助10
8秒前
9秒前
烟花应助lindoudou采纳,获得10
10秒前
纯真怜梦发布了新的文献求助10
10秒前
QQ发布了新的文献求助10
10秒前
两张发布了新的文献求助10
11秒前
ddd666完成签到,获得积分10
12秒前
核桃发布了新的文献求助10
13秒前
活泼的牛青完成签到 ,获得积分10
14秒前
14秒前
星辰大海应助####采纳,获得10
15秒前
15秒前
16秒前
沙茶酱菜卷完成签到 ,获得积分10
16秒前
汉堡包应助两张采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559