鲍曼不动杆菌
头孢吡肟
头孢他啶
亚胺培南
环丙沙星
不动杆菌
哌拉西林
抗生素
医学
内科学
微生物学
生物
细菌
抗生素耐药性
遗传学
铜绿假单胞菌
作者
Xuejiao Hu,Yunhu Zhao,Peng Han,Suling Liu,Weijiang Liu,Cong Mai,Qianyun Deng,Jing Ren,Jiajie Luo,Fangyuan Chen,Xuefeng Jia,Jing Zhang,G. R. Rao,Bing Gu
摘要
Multidrug-resistant (MDR) bacteria are important public health problems. Antibiotic susceptibility testing (AST) currently uses time-consuming culture-based procedures, which cause treatment delays and increased mortality. We developed a machine learning model using Acinetobacter baumannii as an example to explore a fast AST approach using metagenomic next-generation sequencing (mNGS) data. The key genetic characteristics associated with antimicrobial resistance (AMR) were selected through a least absolute shrinkage and selection operator (LASSO) regression model based on 1,942 A. baumannii genomes. The mNGS-AST prediction model was accordingly established, validated, and optimized using read simulation sequences of clinical isolates. Clinical specimens were collected to evaluate the performance of the model retrospectively and prospectively. We identified 20, 31, 24, and 3 AMR signatures of A. baumannii for imipenem, ceftazidime, cefepime, and ciprofloxacin, respectively. Four mNGS-AST models had a positive predictive value (PPV) greater than 0.97 for 230 retrospective samples, with negative predictive values (NPVs) of 100% (imipenem), 86.67% (ceftazidime), 86.67% (cefepime), and 90.91% (ciprofloxacin). Our method classified antibacterial phenotypes with an accuracy of 97.65% for imipenem, 96.57% for ceftazidime, 97.64% for cefepime, and 98.36% for ciprofloxacin. The average reporting time of mNGS-based AST was 19.1 h, in contrast to the 63.3 h for culture-based AST, thus yielding a significant reduction of 44.3 h. mNGS-AST prediction results coincided 100% with the phenotypic AST results when testing 50 prospective samples. The mNGS-based model could be used as a rapid genotypic AST approach to identify A. baumannii and predict resistance and susceptibility to antibacterials and could be applicable to other pathogens and facilitate rational antimicrobial usage.
科研通智能强力驱动
Strongly Powered by AbleSci AI