Ultrasound image-based deep learning to assist in diagnosing gross extrathyroidal extension thyroid cancer: a retrospective multicenter study

医学 甲状腺结节 超声波 甲状腺癌 粗检 放射科 回顾性队列研究 癌症 甲状腺 核医学 内科学 病理
作者
Qi Qi,Xingzhi Huang,Yan Zhang,Shuangting Cai,Zhaoyou Liu,Taorong Qiu,Zihan Cui,Aiyun Zhou,Xinchun Yuan,Wan Zhu,Xiang Min,Yue Wu,Weijia Wang,Chunquan Zhang,Pan Xu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:58: 101905-101905 被引量:3
标识
DOI:10.1016/j.eclinm.2023.101905
摘要

The presence of gross extrathyroidal extension (ETE) in thyroid cancer will affect the prognosis of patients, but imaging examination cannot provide a reliable diagnosis for it. This study was conducted to develop a deep learning (DL) model for localization and evaluation of thyroid cancer nodules in ultrasound images before surgery for the presence of gross ETE.From January 2016 to December 2021 grayscale ultrasound images of 806 thyroid cancer nodules (4451 images) from 4 medical centers were retrospectively analyzed, including 517 no gross ETE nodules and 289 gross ETE nodules. 283 no gross ETE nodules and 158 gross ETE nodules were randomly selected from the internal dataset to form a training set and validation set (2914 images), and a multitask DL model was constructed for diagnosing gross ETE. In addition, the clinical model and the clinical and DL combined model were constructed. In the internal test set [974 images (139 no gross ETE nodules and 83 gross ETE nodules)] and the external test set [563 images (95 no gross ETE nodules and 48 gross ETE nodules)], the diagnostic performance of DL model was verified based on the pathological results. And then, compared the results with the diagnosis by 2 senior and 2 junior radiologists.In the internal test set, DL model demonstrated the highest AUC (0.91; 95% CI: 0.87, 0.96), which was significantly higher than that of two senior radiologists [(AUC, 0.78; 95% CI: 0.71, 0.85; P < 0.001) and (AUC, 0.76; 95% CI: 0.70, 0.83; P < 0.001)] and two juniors radiologists [(AUC, 0.65; 95% CI: 0.58, 0.73; P < 0.001) and (AUC, 0.69; 95% CI: 0.62, 0.77; P < 0.001)]. DL model was significantly higher than clinical model [(AUC, 0.84; 95% CI: 0.79, 0.89; P = 0.019)], but there was no significant difference between DL model and clinical and DL combined model [(AUC, 0.94; 95% CI: 0.91, 0.97; P = 0.143)]. In the external test set, DL model also demonstrated the highest AUC (0.88, 95% CI: 0.81, 0.94), which was significantly higher than that of one of senior radiologists [(AUC, 0.75; 95% CI: 0.66, 0.84; P = 0.008) and (AUC, 0.81; 95% CI: 0.72, 0.89; P = 0.152)] and two junior radiologists [(AUC, 0.72; 95% CI: 0.62, 0.81; P = 0.002) and (AUC, 0.67; 95 CI: 0.57, 0.77; P < 0.001]. There was no significant difference between DL model and clinical model [(AUC, 0.85; 95% CI: 0.79, 0.91; P = 0.516)] and clinical + DL model [(AUC, 0.92; 95% CI: 0.87, 0.96; P = 0.093)]. Using DL model, the diagnostic ability of two junior radiologists was significantly improved.The DL model based on ultrasound imaging is a simple and helpful tool for preoperative diagnosis of gross ETE thyroid cancer, and its diagnostic performance is equivalent to or even better than that of senior radiologists.Jiangxi Provincial Natural Science Foundation (20224BAB216079), the Key Research and Development Program of Jiangxi Province (20181BBG70031), and the Interdisciplinary Innovation Fund of Natural Science, Nanchang University (9167-28220007-YB2110).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanghuifen123完成签到,获得积分10
2秒前
2秒前
孙小雨完成签到,获得积分10
4秒前
yyyyyqy发布了新的文献求助10
4秒前
小可爱啵完成签到,获得积分10
5秒前
白色风车完成签到,获得积分10
5秒前
无奈的如彤完成签到,获得积分10
6秒前
安可瓶子发布了新的文献求助10
9秒前
Murphy应助郭自同采纳,获得10
9秒前
共享精神应助菜菜子采纳,获得10
9秒前
wanci应助李东秋采纳,获得10
9秒前
yufanhui应助Leon采纳,获得10
12秒前
12秒前
sxy完成签到,获得积分10
13秒前
安静的虔完成签到,获得积分20
14秒前
喜悦剑通完成签到,获得积分10
15秒前
15秒前
成就的笑南完成签到 ,获得积分10
15秒前
留胡子的昊强完成签到,获得积分10
16秒前
小蘑菇应助yyyyyqy采纳,获得10
17秒前
颜凡桃完成签到,获得积分10
19秒前
张童鞋发布了新的文献求助10
20秒前
20秒前
虚心醉蝶完成签到 ,获得积分10
22秒前
华仔应助一方通行采纳,获得10
22秒前
桐桐应助Wang采纳,获得10
23秒前
24秒前
ding应助victor采纳,获得10
24秒前
24秒前
25秒前
25秒前
WWXWWX发布了新的文献求助10
26秒前
丘比特应助缓慢海亦采纳,获得10
26秒前
28秒前
28秒前
30秒前
斯文败类应助赫尔采纳,获得10
30秒前
灿cancan发布了新的文献求助10
31秒前
香蕉觅云应助努力毕业、采纳,获得10
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905