Ultrasound image-based deep learning to assist in diagnosing gross extrathyroidal extension thyroid cancer: a retrospective multicenter study

医学 甲状腺结节 超声波 甲状腺癌 粗检 放射科 回顾性队列研究 癌症 甲状腺 核医学 内科学 病理
作者
Qi Qi,Xingzhi Huang,Yan Zhang,Shuangting Cai,Zhaoyou Liu,Taorong Qiu,Zihan Cui,Aiyun Zhou,Xinchun Yuan,Wan Zhu,Xiang Min,Yue Wu,Weijia Wang,Chunquan Zhang,Pan Xu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:58: 101905-101905 被引量:3
标识
DOI:10.1016/j.eclinm.2023.101905
摘要

The presence of gross extrathyroidal extension (ETE) in thyroid cancer will affect the prognosis of patients, but imaging examination cannot provide a reliable diagnosis for it. This study was conducted to develop a deep learning (DL) model for localization and evaluation of thyroid cancer nodules in ultrasound images before surgery for the presence of gross ETE.From January 2016 to December 2021 grayscale ultrasound images of 806 thyroid cancer nodules (4451 images) from 4 medical centers were retrospectively analyzed, including 517 no gross ETE nodules and 289 gross ETE nodules. 283 no gross ETE nodules and 158 gross ETE nodules were randomly selected from the internal dataset to form a training set and validation set (2914 images), and a multitask DL model was constructed for diagnosing gross ETE. In addition, the clinical model and the clinical and DL combined model were constructed. In the internal test set [974 images (139 no gross ETE nodules and 83 gross ETE nodules)] and the external test set [563 images (95 no gross ETE nodules and 48 gross ETE nodules)], the diagnostic performance of DL model was verified based on the pathological results. And then, compared the results with the diagnosis by 2 senior and 2 junior radiologists.In the internal test set, DL model demonstrated the highest AUC (0.91; 95% CI: 0.87, 0.96), which was significantly higher than that of two senior radiologists [(AUC, 0.78; 95% CI: 0.71, 0.85; P < 0.001) and (AUC, 0.76; 95% CI: 0.70, 0.83; P < 0.001)] and two juniors radiologists [(AUC, 0.65; 95% CI: 0.58, 0.73; P < 0.001) and (AUC, 0.69; 95% CI: 0.62, 0.77; P < 0.001)]. DL model was significantly higher than clinical model [(AUC, 0.84; 95% CI: 0.79, 0.89; P = 0.019)], but there was no significant difference between DL model and clinical and DL combined model [(AUC, 0.94; 95% CI: 0.91, 0.97; P = 0.143)]. In the external test set, DL model also demonstrated the highest AUC (0.88, 95% CI: 0.81, 0.94), which was significantly higher than that of one of senior radiologists [(AUC, 0.75; 95% CI: 0.66, 0.84; P = 0.008) and (AUC, 0.81; 95% CI: 0.72, 0.89; P = 0.152)] and two junior radiologists [(AUC, 0.72; 95% CI: 0.62, 0.81; P = 0.002) and (AUC, 0.67; 95 CI: 0.57, 0.77; P < 0.001]. There was no significant difference between DL model and clinical model [(AUC, 0.85; 95% CI: 0.79, 0.91; P = 0.516)] and clinical + DL model [(AUC, 0.92; 95% CI: 0.87, 0.96; P = 0.093)]. Using DL model, the diagnostic ability of two junior radiologists was significantly improved.The DL model based on ultrasound imaging is a simple and helpful tool for preoperative diagnosis of gross ETE thyroid cancer, and its diagnostic performance is equivalent to or even better than that of senior radiologists.Jiangxi Provincial Natural Science Foundation (20224BAB216079), the Key Research and Development Program of Jiangxi Province (20181BBG70031), and the Interdisciplinary Innovation Fund of Natural Science, Nanchang University (9167-28220007-YB2110).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Rui采纳,获得10
刚刚
Libra完成签到,获得积分10
1秒前
雪儿发布了新的文献求助30
1秒前
无悔呀发布了新的文献求助10
1秒前
小巧的可仁完成签到 ,获得积分10
1秒前
1秒前
zhao完成签到,获得积分10
2秒前
masu发布了新的文献求助10
2秒前
冷酷尔琴发布了新的文献求助10
3秒前
Ll发布了新的文献求助10
3秒前
优雅山柏完成签到,获得积分10
3秒前
XinyiZhang发布了新的文献求助10
3秒前
小蘑菇应助yangyang采纳,获得10
3秒前
慕青应助欢欢采纳,获得10
4秒前
小憩完成签到,获得积分10
4秒前
南乔发布了新的文献求助10
4秒前
张静静发布了新的文献求助10
5秒前
云儿完成签到,获得积分10
5秒前
淡淡的洋葱完成签到,获得积分10
5秒前
小洲王先生完成签到,获得积分10
6秒前
6秒前
dd完成签到,获得积分10
6秒前
6秒前
7秒前
CCL应助kk2024采纳,获得50
7秒前
wjs0406完成签到,获得积分10
7秒前
自爱悠然发布了新的文献求助10
7秒前
贺雪完成签到,获得积分10
8秒前
8秒前
玉yu发布了新的文献求助10
9秒前
深情秋刀鱼完成签到,获得积分10
9秒前
星辰大海应助冷酷尔琴采纳,获得10
9秒前
9秒前
9秒前
隐形的大有完成签到,获得积分10
10秒前
浩浩大人发布了新的文献求助10
10秒前
buno应助圈圈采纳,获得10
10秒前
11秒前
隐形曼青应助Bo采纳,获得10
11秒前
西宁阿应助啵乐乐采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740