Secure deduplication method based on tag clustering

重复数据消除 计算机科学 数据挖掘 上传 云计算 聚类分析 指纹(计算) 云存储 加密 数据库 计算机安全 人工智能 操作系统
作者
Fengkun Gao,Chunbo Wang,Xiaoqiang Di,Cao Jian,Xu Liu,Hui Qi
标识
DOI:10.1109/ispa-bdcloud-socialcom-sustaincom57177.2022.00112
摘要

Although cloud storage technology can provide users with convenient storage services, a large amount of duplicate data in the cloud brings a huge storage burden and the risk of privacy leakage. To improve the utilization of cloud storage resources and protect data confidentiality, random message lock encryption technology (R-MLE) can be used to delete redundant data in the cloud. But the theoretical basis of the deduplication scheme based on R-MLE is bilinear mapping, so the computational cost of finding duplicate fingerprint-tags is relatively large. To improve the deduplication efficiency, we proposed a secure deduplication scheme based on the autoencoder model in our previous research, using the model to generate the abstract-tags of the data, and using the similarity of the abstract-tags to quickly filter out the fingerprint-tags with high repeatability, which greatly reduces the number of fingerprint-tag comparisons. On this basis, this paper further proposes a secure deduplication method based on k-means clustering. First, the abstract-tags in cloud storage are clustered, and then the distance between the abstract-tags uploaded by users and the centroid is calculated. Then, the abstract-tags of the category with the closest distance are selected. Finally, duplicate data detection is performed only on the fingerprint-tags corresponding to these abstract-tags. In this way, the filtering speed of fingerprint-tags can be further accelerated. Experiments show that our method has higher performance than the secure deduplication method based on the autoencoder model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯冯冯完成签到 ,获得积分10
刚刚
T123456789完成签到,获得积分10
刚刚
羽宇完成签到,获得积分10
3秒前
万里完成签到,获得积分10
6秒前
小白完成签到,获得积分10
7秒前
双夏完成签到 ,获得积分10
7秒前
独特笙完成签到 ,获得积分10
7秒前
JERRI完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助gdh采纳,获得10
9秒前
情怀应助qing采纳,获得10
11秒前
wangbq发布了新的文献求助10
11秒前
橙子皮完成签到,获得积分10
15秒前
19秒前
爱学习的悦悦子完成签到 ,获得积分10
20秒前
从南到北发布了新的文献求助50
22秒前
冷傲以珊完成签到,获得积分10
22秒前
doc.wei完成签到 ,获得积分10
22秒前
23秒前
23秒前
25秒前
gdh发布了新的文献求助10
27秒前
Airc完成签到,获得积分10
27秒前
lan发布了新的文献求助10
30秒前
gc完成签到,获得积分10
31秒前
32秒前
33秒前
35秒前
xly完成签到,获得积分10
36秒前
明明发布了新的文献求助10
36秒前
37秒前
谢佳冀完成签到,获得积分10
37秒前
38秒前
ZYH发布了新的文献求助30
38秒前
39秒前
谢佳冀发布了新的文献求助10
40秒前
Hayat应助AireenBeryl531采纳,获得50
41秒前
小康发布了新的文献求助10
41秒前
Gardener完成签到,获得积分10
42秒前
赘婿应助yy采纳,获得30
47秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043