Secure deduplication method based on tag clustering

重复数据消除 计算机科学 数据挖掘 上传 云计算 聚类分析 指纹(计算) 云存储 加密 数据库 计算机安全 人工智能 操作系统
作者
Fengkun Gao,Chunbo Wang,Xiaoqiang Di,Cao Jian,Xu Liu,Hui Qi
标识
DOI:10.1109/ispa-bdcloud-socialcom-sustaincom57177.2022.00112
摘要

Although cloud storage technology can provide users with convenient storage services, a large amount of duplicate data in the cloud brings a huge storage burden and the risk of privacy leakage. To improve the utilization of cloud storage resources and protect data confidentiality, random message lock encryption technology (R-MLE) can be used to delete redundant data in the cloud. But the theoretical basis of the deduplication scheme based on R-MLE is bilinear mapping, so the computational cost of finding duplicate fingerprint-tags is relatively large. To improve the deduplication efficiency, we proposed a secure deduplication scheme based on the autoencoder model in our previous research, using the model to generate the abstract-tags of the data, and using the similarity of the abstract-tags to quickly filter out the fingerprint-tags with high repeatability, which greatly reduces the number of fingerprint-tag comparisons. On this basis, this paper further proposes a secure deduplication method based on k-means clustering. First, the abstract-tags in cloud storage are clustered, and then the distance between the abstract-tags uploaded by users and the centroid is calculated. Then, the abstract-tags of the category with the closest distance are selected. Finally, duplicate data detection is performed only on the fingerprint-tags corresponding to these abstract-tags. In this way, the filtering speed of fingerprint-tags can be further accelerated. Experiments show that our method has higher performance than the secure deduplication method based on the autoencoder model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
神勇契完成签到,获得积分10
1秒前
肖战战完成签到 ,获得积分10
2秒前
2秒前
5秒前
图里琛发布了新的文献求助10
7秒前
Go发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
wise111发布了新的文献求助10
8秒前
香蕉觅云应助溜溜梅采纳,获得10
8秒前
9秒前
科研通AI6应助幸福的丑采纳,获得30
11秒前
13秒前
13秒前
JamesPei应助GXJ采纳,获得10
16秒前
17秒前
小鬼丶发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
有钱完成签到 ,获得积分10
19秒前
赵浩完成签到,获得积分10
19秒前
怡然海冬发布了新的文献求助10
20秒前
20秒前
浮游应助GXJ采纳,获得10
21秒前
22秒前
聪慧若风发布了新的文献求助10
22秒前
23秒前
oo完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
gulu发布了新的文献求助10
28秒前
张路完成签到 ,获得积分10
29秒前
小鱼骑单车应助风清扬采纳,获得30
29秒前
Akim应助风清扬采纳,获得80
29秒前
酷波er应助风清扬采纳,获得10
29秒前
FashionBoy应助风清扬采纳,获得10
29秒前
852应助风清扬采纳,获得10
29秒前
在水一方应助bbabb采纳,获得30
29秒前
Hello应助Scidog采纳,获得10
30秒前
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125702
求助须知:如何正确求助?哪些是违规求助? 4329385
关于积分的说明 13491077
捐赠科研通 4164307
什么是DOI,文献DOI怎么找? 2282880
邀请新用户注册赠送积分活动 1283935
关于科研通互助平台的介绍 1223294