Open-World Learning for Traffic Scenarios Categorisation

计算机科学 人工智能 机器学习 组分(热力学) 聚类分析 生成模型 建筑 离群值 开放集 班级(哲学) 集合(抽象数据类型) 特征(语言学) 生成语法 地理 物理 离散数学 哲学 热力学 考古 语言学 程序设计语言 数学
作者
Lakshman Balasubramanian,Jonas Wurst,Michael Botsch,Ke Deng
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (5): 3506-3521 被引量:3
标识
DOI:10.1109/tiv.2023.3260270
摘要

Categorisation of traffic scenarios is an important component of scenario-based development and validation of automated vehicles. This problem requires an open-world learning approach but most of the machine learning methods used for traffic scenario categorisation work under the closed-world assumption. A closed-world model will classify all the inputs to one of the classes from the training data. An open-world learning method can identify, collect and cluster unknown traffic scenarios and incrementally add new scenario categories to the already existing ones. In this work, a hierarchical architecture for open-world learning method is proposed. The open-world architecture consists of the following components: an open-set recognition model, storage buffer, outlier detection, class-conditioned generative replay model, and clustering method. The components in the architecture contain novel machine learning approaches to address the challenging open-world learning tasks, e.g., Extreme Value Theory (EVT) for open-set recognition, Random Forest Activation Patterns (RFAPs) for clustering, class-conditioned generative models for replay, and self-supervised pre-training for feature generation. The proposed architecture is tested using real-world and simulation-based datasets. The results show the performance advantages of the proposed method. Also, extensive analysis of each component of the hierarchical open-world architecture underlines their importance in the overall architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴达天使完成签到,获得积分10
5秒前
江三村完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
23秒前
CyberHamster完成签到,获得积分10
33秒前
xiaohong完成签到,获得积分10
36秒前
朱比特完成签到,获得积分10
37秒前
38秒前
zmuzhang2019发布了新的文献求助10
44秒前
onestepcloser完成签到 ,获得积分0
44秒前
zoe完成签到 ,获得积分10
45秒前
发嗲的慕蕊完成签到 ,获得积分10
46秒前
Linson完成签到,获得积分10
47秒前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
1分钟前
zzzz完成签到,获得积分20
1分钟前
GEZIKU完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赵三岁发布了新的文献求助10
1分钟前
wwb完成签到,获得积分10
2分钟前
2分钟前
2分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
2分钟前
能干冰露完成签到,获得积分10
2分钟前
牛奶拌可乐完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
周小鱼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
老张完成签到,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022