Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models

医学 肺癌 队列 人口 癌症 内科学 肺癌筛查 队列研究 回顾性队列研究 比例危险模型 前列腺癌 全国肺筛查试验 入射(几何) 风险评估 肿瘤科 环境卫生 光学 物理 计算机科学 计算机安全
作者
Weiqi Liao,Carol Coupland,Judith Burchardt,David Baldwin,Fergus Gleeson,Julia Hippisley‐Cox,Fergus Gleeson,David Baldwin,George Batchkala,James Buchanan,Judith Burchardt,Rohan Chakraborty,R Chana,Yan Chen,Carol Coupland,Charles Crichton,Jim Davies,Anand Devaraj,Mengran Fan,Julia Hippisley‐Cox
出处
期刊:The Lancet Respiratory Medicine [Elsevier]
卷期号:11 (8): 685-697 被引量:58
标识
DOI:10.1016/s2213-2600(23)00050-4
摘要

Background Lung cancer is the second most common cancer in incidence and the leading cause of cancer deaths worldwide.Meanwhile, lung cancer screening with low-dose CT can reduce mortality.The UK National Screening Committee recommended targeted lung cancer screening on Sept 29, 2022, and asked for more modelling work to be done to help refine the recommendation.This study aims to develop and validate a risk prediction model-the CanPredict (lung) model-for lung cancer screening in the UK and compare the model performance against seven other risk prediction models.Methods For this retrospective, population-based, cohort study, we used linked electronic health records from two English primary care databases: QResearch (Jan 1, 2005-March 31, 2020) and Clinical Practice Research Datalink (CPRD) Gold (Jan 1, 2004-Jan 1, 2015).The primary study outcome was an incident diagnosis of lung cancer.We used a Cox proportional-hazards model in the derivation cohort (12•99 million individuals aged 25-84 years from the QResearch database) to develop the CanPredict (lung) model in men and women.We used discrimination measures (Harrell's C statistic, D statistic, and the explained variation in time to diagnosis of lung cancer [R ² D ]) and calibration plots to evaluate model performance by sex and ethnicity, using data from QResearch (4•14 million people for internal validation) and CPRD (2•54 million for external validation).Seven models for predicting lung cancer risk (Liverpool Lung Project [LLP] v2 , LLP v3 , Lung Cancer Risk Assessment Tool [LCRAT], Prostate, Lung, Colorectal, and Ovarian [PLCO] M2012 , PLCO M2014 , Pittsburgh, and Bach) were selected to compare their model performance with the CanPredict (lung) model using two approaches: (1) in ever-smokers aged 55-74 years (the population recommended for lung cancer screening in the UK), and (2) in the populations for each model determined by that model's eligibility criteria.Findings There were 73 380 incident lung cancer cases in the QResearch derivation cohort, 22 838 cases in the QResearch internal validation cohort, and 16 145 cases in the CPRD external validation cohort during follow-up.The predictors in the final model included sociodemographic characteristics (age, sex, ethnicity, Townsend score), lifestyle factors (BMI, smoking and alcohol status), comorbidities, family history of lung cancer, and personal history of other cancers.Some predictors were different between the models for women and men, but model performance was similar between sexes.The CanPredict (lung) model showed excellent discrimination and calibration in both internal and external validation of the full model, by sex and ethnicity.The model explained 65% of the variation in time to diagnosis of lung cancer in both sexes in the QResearch validation cohort and 59% of the R ² D in both sexes in the CPRD validation cohort.Harrell's C statistics were 0•90 in the QResearch (validation) cohort and 0•87 in the CPRD cohort, and the D statistics were 2•8 in the QResearch (validation) cohort and 2•4 in the CPRD cohort.Compared with seven other lung cancer prediction models, the CanPredict (lung) model had the best performance in discrimination, calibration, and net benefit across three prediction horizons (5, 6, and 10 years) in the two approaches.The CanPredict (lung) model also had higher sensitivity than the current UK recommended models (LLP v2 and PLCO M2012 ), as it identified more lung cancer cases than those models by screening the same amount of individuals at high risk.Interpretation The CanPredict (lung) model was developed, and internally and externally validated, using data from 19•67 million people from two English primary care databases.Our model has potential utility for risk stratification of the UK primary care population and selection of individuals at high risk of lung cancer for targeted screening.If our model is recommended to be implemented in primary care, each individual's risk can be calculated using information in the primary care electronic health records, and people at high risk can be identified for the lung cancer screening programme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
awrawsaf完成签到 ,获得积分10
刚刚
woshiwuziq完成签到 ,获得积分10
刚刚
xlk2222完成签到,获得积分10
刚刚
rarfen完成签到,获得积分10
1秒前
兮兮完成签到,获得积分10
1秒前
王加一发布了新的文献求助10
1秒前
巴巴拉拉巴拉完成签到 ,获得积分10
2秒前
无言完成签到,获得积分10
2秒前
汐鹿完成签到,获得积分10
3秒前
陈哈哈完成签到,获得积分10
3秒前
鱼大大关注了科研通微信公众号
3秒前
3秒前
刻苦的丹妗完成签到,获得积分10
4秒前
dscvigykyob完成签到,获得积分10
4秒前
4秒前
小默完成签到,获得积分10
4秒前
了吧完成签到,获得积分10
6秒前
缓慢修杰完成签到,获得积分10
6秒前
7秒前
15919229415完成签到,获得积分10
7秒前
yull完成签到,获得积分10
7秒前
林登万发布了新的文献求助10
9秒前
huaner完成签到,获得积分10
9秒前
xi关注了科研通微信公众号
9秒前
Steve完成签到,获得积分10
9秒前
田田完成签到,获得积分10
9秒前
10秒前
tiantian完成签到,获得积分10
10秒前
龙凌音完成签到,获得积分10
10秒前
Sdpol完成签到,获得积分10
10秒前
CodeCraft应助guajiguaji采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
Lucia发布了新的文献求助10
11秒前
orixero应助优秀的凉面采纳,获得10
12秒前
汪蔓蔓完成签到 ,获得积分10
12秒前
sai完成签到,获得积分10
12秒前
慕容绝义完成签到,获得积分10
13秒前
lcx完成签到,获得积分10
13秒前
Brad_AN完成签到,获得积分10
13秒前
彩色雪柳完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715880
求助须知:如何正确求助?哪些是违规求助? 5237687
关于积分的说明 15275397
捐赠科研通 4866497
什么是DOI,文献DOI怎么找? 2613022
邀请新用户注册赠送积分活动 1563137
关于科研通互助平台的介绍 1520689