清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models

医学 肺癌 队列 人口 癌症 内科学 肺癌筛查 队列研究 回顾性队列研究 比例危险模型 前列腺癌 全国肺筛查试验 入射(几何) 风险评估 肿瘤科 环境卫生 光学 物理 计算机科学 计算机安全
作者
Weiqi Liao,Carol Coupland,Judith Burchardt,David Baldwin,Fergus Gleeson,Julia Hippisley‐Cox,Fergus Gleeson,David Baldwin,George Batchkala,James Buchanan,Judith Burchardt,Rohan Chakraborty,R Chana,Yan Chen,Carol Coupland,Charles Crichton,Jim Davies,Anand Devaraj,Mengran Fan,Julia Hippisley‐Cox
出处
期刊:The Lancet Respiratory Medicine [Elsevier]
卷期号:11 (8): 685-697 被引量:58
标识
DOI:10.1016/s2213-2600(23)00050-4
摘要

Background Lung cancer is the second most common cancer in incidence and the leading cause of cancer deaths worldwide.Meanwhile, lung cancer screening with low-dose CT can reduce mortality.The UK National Screening Committee recommended targeted lung cancer screening on Sept 29, 2022, and asked for more modelling work to be done to help refine the recommendation.This study aims to develop and validate a risk prediction model-the CanPredict (lung) model-for lung cancer screening in the UK and compare the model performance against seven other risk prediction models.Methods For this retrospective, population-based, cohort study, we used linked electronic health records from two English primary care databases: QResearch (Jan 1, 2005-March 31, 2020) and Clinical Practice Research Datalink (CPRD) Gold (Jan 1, 2004-Jan 1, 2015).The primary study outcome was an incident diagnosis of lung cancer.We used a Cox proportional-hazards model in the derivation cohort (12•99 million individuals aged 25-84 years from the QResearch database) to develop the CanPredict (lung) model in men and women.We used discrimination measures (Harrell's C statistic, D statistic, and the explained variation in time to diagnosis of lung cancer [R ² D ]) and calibration plots to evaluate model performance by sex and ethnicity, using data from QResearch (4•14 million people for internal validation) and CPRD (2•54 million for external validation).Seven models for predicting lung cancer risk (Liverpool Lung Project [LLP] v2 , LLP v3 , Lung Cancer Risk Assessment Tool [LCRAT], Prostate, Lung, Colorectal, and Ovarian [PLCO] M2012 , PLCO M2014 , Pittsburgh, and Bach) were selected to compare their model performance with the CanPredict (lung) model using two approaches: (1) in ever-smokers aged 55-74 years (the population recommended for lung cancer screening in the UK), and (2) in the populations for each model determined by that model's eligibility criteria.Findings There were 73 380 incident lung cancer cases in the QResearch derivation cohort, 22 838 cases in the QResearch internal validation cohort, and 16 145 cases in the CPRD external validation cohort during follow-up.The predictors in the final model included sociodemographic characteristics (age, sex, ethnicity, Townsend score), lifestyle factors (BMI, smoking and alcohol status), comorbidities, family history of lung cancer, and personal history of other cancers.Some predictors were different between the models for women and men, but model performance was similar between sexes.The CanPredict (lung) model showed excellent discrimination and calibration in both internal and external validation of the full model, by sex and ethnicity.The model explained 65% of the variation in time to diagnosis of lung cancer in both sexes in the QResearch validation cohort and 59% of the R ² D in both sexes in the CPRD validation cohort.Harrell's C statistics were 0•90 in the QResearch (validation) cohort and 0•87 in the CPRD cohort, and the D statistics were 2•8 in the QResearch (validation) cohort and 2•4 in the CPRD cohort.Compared with seven other lung cancer prediction models, the CanPredict (lung) model had the best performance in discrimination, calibration, and net benefit across three prediction horizons (5, 6, and 10 years) in the two approaches.The CanPredict (lung) model also had higher sensitivity than the current UK recommended models (LLP v2 and PLCO M2012 ), as it identified more lung cancer cases than those models by screening the same amount of individuals at high risk.Interpretation The CanPredict (lung) model was developed, and internally and externally validated, using data from 19•67 million people from two English primary care databases.Our model has potential utility for risk stratification of the UK primary care population and selection of individuals at high risk of lung cancer for targeted screening.If our model is recommended to be implemented in primary care, each individual's risk can be calculated using information in the primary care electronic health records, and people at high risk can be identified for the lung cancer screening programme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的晓小完成签到 ,获得积分10
1秒前
午午午午完成签到 ,获得积分10
2秒前
coding完成签到,获得积分10
5秒前
夜话风陵杜完成签到 ,获得积分0
8秒前
SciGPT应助ybwei2008_163采纳,获得10
23秒前
酷波er应助keke采纳,获得10
26秒前
HY完成签到 ,获得积分10
32秒前
35秒前
keke发布了新的文献求助10
41秒前
qin完成签到 ,获得积分10
43秒前
飞龙在天完成签到 ,获得积分10
43秒前
老实的乐儿完成签到 ,获得积分10
45秒前
充电宝应助ybwei2008_163采纳,获得10
48秒前
丘比特应助陈杰采纳,获得10
53秒前
1分钟前
大个应助SONGREN采纳,获得20
1分钟前
李爱国应助Developing_human采纳,获得10
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
loom完成签到 ,获得积分10
1分钟前
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
bkagyin应助良月三十采纳,获得10
1分钟前
高兴的天川完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
上官若男应助ybwei2008_163采纳,获得10
1分钟前
小小咸鱼完成签到 ,获得积分10
1分钟前
Ava应助ybwei2008_163采纳,获得10
1分钟前
1分钟前
陈杰完成签到,获得积分10
1分钟前
1分钟前
SONGREN发布了新的文献求助20
1分钟前
陈杰发布了新的文献求助10
1分钟前
小二郎应助Jeff采纳,获得10
2分钟前
海英完成签到,获得积分10
2分钟前
程小柒完成签到 ,获得积分10
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664650
求助须知:如何正确求助?哪些是违规求助? 4867676
关于积分的说明 15108309
捐赠科研通 4823315
什么是DOI,文献DOI怎么找? 2582234
邀请新用户注册赠送积分活动 1536272
关于科研通互助平台的介绍 1494672