预加载
材料科学
肿胀 的
锂(药物)
降级(电信)
电池(电)
离子
复合材料
化学
热力学
功率(物理)
电气工程
医学
血流动力学
物理
工程类
有机化学
内科学
内分泌学
作者
Emanuele Michelini,Patrick Höschele,Simon Franz Heindl,Simon Erker,Christian Ellersdorfer
出处
期刊:Batteries
[MDPI AG]
日期:2023-04-04
卷期号:9 (4): 218-218
被引量:19
标识
DOI:10.3390/batteries9040218
摘要
The safety of lithium-ion batteries has to be guaranteed over the complete lifetime considering geometry changes caused by reversible and irreversible swellings and degradation mechanisms. An understanding of the pressure distribution and gradients is necessary to optimize battery modules and avoid local degradation bearing the risk of safety-relevant battery changes. In this study, the pressure distribution of two fresh lithium-ion pouch cells was measured with an initial preload force of 300 or 4000 N. Four identical cells were electrochemically aged with a 300 or 4000 N preload force. The irreversible thickness change was measured during aging. After aging, the reversible swelling behavior was investigated to draw conclusions on how the pressure distribution affected the aging behavior. A novel test setup was developed to measure the local cell thickness without contact and with high precision. The results suggested that the applied preload force affected the pressure distribution and pressure gradients on the cell surface. The pressure gradients were found to affect the locality of the irreversible swelling. Positions suffering from large pressure variations and gradients increased strongly in thickness and were affected in terms of their reversible swelling behavior. In particular, the edges of the investigated cells showed a strong thickness increase caused by pressure peaks.
科研通智能强力驱动
Strongly Powered by AbleSci AI