Conditional predictive inference for stable algorithms

数学 重采样 条件概率分布 推论 非参数统计 算法 交叉验证 预测推理 维数(图论) 应用数学 统计 频数推理 人工智能 计算机科学 组合数学 贝叶斯推理 贝叶斯概率
作者
Lukas Steinberger,Hannes Leeb
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:51 (1) 被引量:6
标识
DOI:10.1214/22-aos2250
摘要

We investigate generically applicable and intuitively appealing prediction intervals based on k-fold cross-validation. We focus on the conditional coverage probability of the proposed intervals, given the observations in the training sample (hence, training conditional validity), and show that it is close to the nominal level, in an appropriate sense, provided that the underlying algorithm used for computing point predictions is sufficiently stable when feature-response pairs are omitted. Our results are based on a finite sample analysis of the empirical distribution function of k-fold cross-validation residuals and hold in nonparametric settings with only minimal assumptions on the error distribution. To illustrate our results, we also apply them to high-dimensional linear predictors, where we obtain uniform asymptotic training conditional validity as both sample size and dimension tend to infinity at the same rate and consistent parameter estimation typically fails. These results show that despite the serious problems of resampling procedures for inference on the unknown parameters (cf. in A Festschrift for Erich L. Lehmann (1983) 28–48 Wadsworth; Ann. Statist. 24 (1996) 307–335; J. Mach. Learn. Res. 19 (2018) 5), cross-validation methods can be successfully applied to obtain reliable predictive inference even in high dimensions and conditionally on the training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助XM采纳,获得10
刚刚
1秒前
2秒前
2秒前
3秒前
852应助科研通管家采纳,获得50
3秒前
ED应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Ricey应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
morena应助科研通管家采纳,获得20
3秒前
ED应助科研通管家采纳,获得30
3秒前
wanci应助科研通管家采纳,获得30
3秒前
Ricey应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
5秒前
嘻嘻嘻发布了新的文献求助10
6秒前
Kenneth发布了新的文献求助10
6秒前
7秒前
科目三应助尊敬寒松采纳,获得10
8秒前
cc发布了新的文献求助10
9秒前
12秒前
Alien发布了新的文献求助10
12秒前
13秒前
坚定的天曼关注了科研通微信公众号
13秒前
刘先生发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
椰汁味完成签到,获得积分10
15秒前
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712